
Web Services for Transmitting Product Information
in the Context of Business-to-Business Integration

Stefan Kuhlins and Bjørn-Henrik Zink

University of Mannheim, Chair of Information Systems III, D-68131 Mannheim, Germany
{kuhlins, bhzink}@rumms.uni-mannheim.de

Abstract. Imagine that the product data of every online shop would be machine-
readable and you could find the best product offers in an instant. Many e-business
scenarios, such as price comparers, electronic markets, product search engines, and
shop directories require integration of distributed heterogeneous information sys-
tems. Information extraction from heterogeneous Web sites has been a research
topic for a long time. A frequently used approach for automatic information aggre-
gation is to parse and extract information directly from Web pages. The main prob-
lem of these software routines is to find appropriate methods for parsing HTML
pages. Web services on the other hand enable software routines to directly com-
municate with distributed information systems, therefore there is no need for pars-
ing Web pages anymore. This paper examines new opportunities and challenges
related to real-time product information transmission using Web services. The
minimal characteristics that are common to all Web services and their application
to a collaborative scenario between price comparers and online shops will be pre-
sented. In order to automate the information system integration we suggest that it
is necessary to standardize the Web service interface for accessing product infor-
mation from online shops. This is demonstrated by an example implementation.
The main contribution of this paper is the practical aspect of using Web service
semantics and technologies for real-time product information transmission.

1. Introduction

Various collaborative business scenarios, such as electronic markets, product search
engines, and shop directories rely on an exchange of information between distributed
heterogeneous information systems. Web services enable data aggregation and integra-
tion of heterogeneous information systems over the Internet through open standards that
are widely supported [HMS02, Ga02]. Currently, there is little direction available on
how to best apply Web services to collaborative business scenarios with multiple service
providers and service requesters. Furthermore, it is interesting to investigate whether or
not Web services are applicable to small companies like online shops with moderate IT
resources and budgets. In this paper, we focus on the scenario of price comparers and
online shops. Both seek to find an inexpensive and fast way of integrating their informa-
tion systems with each other. Automation of the integration process would contribute
significantly to pursue this goal.

Automatic information extraction from heterogeneous Web sites has been a research
topic for a long time [HMS02]. A frequently used approach for automatic information
aggregation is to parse and extract information directly from Web pages, often referred
to as wrappers [Ei99, KT92]. The emphasis of these software routines is to develop
suitable methods for parsing HTML pages. Unfortunately, when HTML pages change
the wrapper must be adjusted manually to avoid malfunction [MSZ01]. Due to the fact
that HTML does not separate Web content from Web presentation HTML pages change
rather frequently and are complicated to interpret automatically.

XML based Web services represent another way of collecting information from hetero-
geneous information systems. XML separates content from presentation but lacks se-
mantics [MSZ01]. The World Wide Web Consortium (W3C) has added semantics to
XML through developments such as XML Schema, Resource Description Framework
(RDF), RDF Schema, and OWL Web Ontology Language (OWL).1 Furthermore, XML
based initiatives, such as Simple Object Access Protocol (SOAP), Web Service Defini-
tion Language (WSDL), Universal, Description, Discovery, and Integration (UDDI)
and electronic business XML (ebXML) Registry, improve automatic Web services dis-
covery and execution [MSZ01].2 Despite these advances, it cannot be certain that soft-
ware routines can determine the intended interpretation of Web services operations. For
example, it would be cumbersome for software routines to identify that a WSDL opera-
tion getSalery refers to the same information as a WSDL operation getWage.

It would be possible to solve this problem by defining an ontology for product informa-
tion interfaces. Our vision, however, is a multitude of standard interface descriptions
that other business applications can reuse. Besides solving the above described execu-
tion problem it would support automatic implementation, deployment, and discovery. In
this paper, we will present a simple WSDL interface for transmitting product informa-
tion as a typical example.

The remainder of the paper is structured as follows: Section 2 presents the business
scenario. In Section 3 the common characteristics of Web services are briefly described.
Furthermore, we explain the process of creating Web services. The following parts of
Section 3 elaborate on the steps of the Web service creation process. Finally, Section 4
summarizes and draws conclusions on the use of Web services for the business scenario
in question.

2. Scenario

Elm@r, the electronic market, is a reference implementation for the shopinfo.xml
standard and is part of a research project at the University of Mannheim’s chair of In-
formation Systems III. There are currently more than 190 participating shops and

1 http://www.w3.org/, http://www.w3.org/XML/Schema, http://www.w3.org/TR/rdf-concepts/,

http://www.w3.org/TR/rdf-schema/, http://www.w3.org/TR/owl-features/
2 http://www.w3.org/TR/soap12, http://www.w3.org/TR/wsdl, http://www.uddi.org/, http://www.ebxml.org/

650,000 products in the Elm@r database3. Elm@r offers a product and vendor search as
well as a price comparison mechanism that enables users to get an overview of product
offerings. Elm@r presents price comparison along with information on availability,
delivery time, delivery costs, and so on. The price comparison mechanism works
through a combination of database search and real-time requests. When an online shop
registers with its shopinfo.xml at Elm@r, it has two options for sharing its product in-
formation. First, the online shop can make a product file available for download. Sec-
ond, the online shop can enable real-time product requests based on well-known tech-
niques used by HTML forms, but create XML documents as response. The real-time
product requests are dynamically executed at the time a user starts searching. It should
be emphasized that the focus of this paper is the transformation of this simple real-time
request into Web services.

Price comparers aim at providing consumers with an overview of price and availability
of products. In order to pursue this goal price comparers need access to information
from online shops. There are several issues related to the integration of online shops.
First, a price comparer has to discover online shops and keep track of them in the future.
Second, having found online shops the price comparer has to integrate its information
system with online shops. Assuming that online shops run their applications on hetero-
geneous systems that are implemented in various programming languages, integration
becomes very cumbersome. Thus, it would be desirable to find a solution that automati-
cally discovers online shops and integrates with them.

Online shops want to reach as many potential customers as possible because this raises
the chances of selling products. One way of doing so is by listing product information at
price comparers. The question is how to make price comparers aware of the online shop
in an inexpensive and fast manner. Furthermore, the integration issue mentioned in the
previous paragraph can also be applied to online shops, however, the opposite way
around. With the relatively modest IT budget of most small online shops, it cannot be
expected that they will provide all price comparers with a specific interface. In other
words, online shops must find an inexpensive way to make price comparers aware of
them and come across a technical solution that does not require highly sophisticated
technical skills. Automation would be eligible for the publishing and integration process.

The difference of this situation to other Web services scenarios can best be described
through an example. For instance, various service providers can implement their version
of a stock quote Web service. Despite the different interface definitions, a service re-
quester can expect to get the same result from any of these stock quote Web services.
Thus, the service requester can choose to integrate with any of the stock quote Web
services without loss of information. In the case of price comparers and online shops,
however, the service requester obtains unique information from each Web service. Price
comparers would have to develop a Web service client for all online shops in order to
avoid loss of information. With thousands of online shops, this is obviously very cum-
bersome and error-prone. Whereas standardization is not necessary in cases of Web

3 http://www.elektronischer-markt.de/

services similar to the stock quote example, it surely seems worthwhile to standardize
the interface for accessing product information from online shops.

3. Web Services

For our purpose, we define Web service in accordance with [WSA04] as a software
system designed to support interoperable machine-to-machine interaction over a net-
work. It has a machine-processable WSDL interface. Other systems interact with the
Web service in a manner prescribed by its description using SOAP messages, conveyed
using Hypertext Transfer Protocol (HTTP) with an XML serialization in conjunction
with other Web-related standards.

The common process of engaging a Web service contains four steps [WSA04]:

1. Define semantics and service description.
2. Service requesters and service providers must become known to each other. For

instance, this can be done by registering and querying an UDDI registry.
3. The service description and semantics are input to, or embodied in, both service

requesters and service providers as appropriate.
4. Service requesters and service providers exchange SOAP messages.

It should be mentioned, that often the service requester and service provider starts by
getting to know each other before agreeing on the usage of semantics and service de-
scription [WSA04].

3.1. Semantics and Service Description

 [WSA04] proposes four different ways for requesters and providers to agree on seman-
tics and service description:

1. The requester and provider communicate directly with each other to explicitly
agree on the service description and semantics.

2. The provider publishes and offers both the service description and semantics
that the requester must accept unmodified as conditions of use.

3. The service description and semantics are defined and published by the re-
quester and offered to providers as conditions of use.

4. The service description and semantics are defined as a standard by an industry
or academic organization, and is used by many requesters and providers.

Communicating directly to explicitly agree on service description and semantics might
be possible if there is a limited number of requesters and providers involved. In the case
of price comparers and online shops there are thousands of parties involved, which make
this approach unsuitable. The case that the provider or requester offers both service
description and semantics would imply that either the provider has to write an interface
for all price comparers or that the requester has to develop a client for all online shops.
As mentioned in the previous section, both cases are insufficient. To define service de-

scription and semantics as a standard by an industry or academic organization, which
many requesters and providers use, seems to be the most suitable approach for this sce-
nario. Besides easing the integration of existing price comparers and online shops it
would also ensure quick integration of future price comparers and online shops because
these would not have to develop an interface from scratch. Of course, the standard inter-
face should take best practice from major industry players, such as Amazon or eBay
among others, into consideration.

Examining the Web services collections at xmethods and salcentral, along with search-
ing Google for Web services, we found a limited number of Web services providing a
product search interface, such as Amazon Web Services, Google Web APIs, or eBay
Developers Program.4 The following proposal is a combination of these Web services,
advanced search options deducted from major search engines, and the search options
currently available at Elm@r. A comprehensive comparison work including the latest
development of Web services solutions in the industry will be addressed in the future.
Listing 1 illustrates our proposal for some operations that provide product information.

public interface ShopSearchServices extends Remote {
 SearchResponse EANSearch(EANSearchRequest esr)
 throws RemoteException, SearchServicesException;
 SearchResponse ProductSearch(ProductSearchRequest psr)
 throws RemoteException, SearchServicesException;
 SearchResponse KeywordSearch(KeywordSearchRequest ksr)
 throws RemoteException, SearchServicesException;
 SearchResponse PromotionSearch(String id)
 throws RemoteException, SearchServicesException;
}

Listing 1. Operations for product information extraction.

EANSearch enables the requester to search for products by their International Article
Number (EAN). Since it is possible to deduce the ISBN from the EAN and vice versa,
this function can be used for an “ISBNSearch” too.

ProductSearch enables the requester to search for products by the type of product,
the brand, or description.

KeywordSearch enables the requester to search for products using key words. The
requester can determine how the keywords should be used, choosing between all, any or
exact. Furthermore, the requester can input an array of words, which should be ex-
cluded.

PromotionSearch enables the requester to find products, which the requester should
promote on his Web site. The input parameter is an id that uniquely identifies the re-
quester. This method should be used only if there is an agreement between the provider
and the requester. Usually, the requester would demand a fee for the promotion of prod-
ucts.

4 http://www.xmethods.com/, http://www.salcentral.com/, http://www.google.com/, http://www.amazon.com/,

http://www.google.com/apis/, http://developer.ebay.com/DevProgram/

SearchResponse. The main part of the SearchResponse is an array of Prod-
uct objects. Furthermore, it contains cache control features from HTTP 1.1 and an
expires parameter.

SearchServicesException contains an error code and a belonging description. In
case of an exception, a SOAP fault will be send to the receiver.

The design of the WSDL document follows the WS-I Basic Profile [WSI04]. The goal
of the WS-I Basic Profile is to identify those areas of Web services that cause the most
problems in interoperability scenarios and to limit these in the future. The WS-I Basic
Profile disallows the use of encoded style documents and therefore our WSDL is written
in document/literal style. Inheritance is outside of the WS-I Basic Profile, but not di-
rectly excluded [WSI04, Br04]. Keeping in mind that Web services have the purpose of
moving data from one place to another we decided not to make use of inheritance
[Br04].

The granularity of operations is an important design issue. The use of coarse-grained
interfaces for external consumption is recommended [WSA04, Br04]. Granularity ser-
vices should use few operations with relatively large and complex messages [WSA04].
Thus, the interface operations were designed to do the complete processing of a search
service.

As mentioned in Section 2, Elm@r uses XML standards for the exchange of product
information. [VTK03] describes the importance of standardized semantics for Web
services and how to use existing XML vocabulary in Web services. However, before
integrating the XML into a Web service it can be useful to examine if there are parts of
the XML that can be replaced by Web services functionality. For instance, the Elm@r
XML contains an error section, which can be replaced by exception handling using
SOAP faults. Listing 2 shows the error part.

<?xml version="1.0" encoding="ISO-8859-1"?>
<osp:ProductList
 xmlns:osp="http://elektronischer-markt.de/schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://elektronischer-markt.de/schema
 http://kuhlins.de/elmar/schema/products.xsd">
 <Common>
 <Version>1.1</Version>
 <Language>de</Language>
 <Currency>EUR</Currency>
 </Common>
 <Error>
 <Code>...</Code>
 <Description>...</Description>
 </Error>
</osp:ProductList>

Listing 2. XML response in case of an error.

[VTK03] describes two approaches for integrating existing XML into Web services:
procedure-oriented and document-oriented. Here we choose the procedure-oriented

approach due to the automatic generation of code skeleton and the use of Remote Proce-
dure Call (RPC).

3.2. Web Services Discovery

After having agreed on service description and semantics the service requester and ser-
vice provider must become known to each other. The question is how price comparers
can discover online shop services. The price comparer is the service initiator and must
obtain the address of a provider. Obtaining the address of a provider can be done by
getting the address directly from the provider or the requester uses a discovery mecha-
nism to locate the service description [WSA04].

The advantage of direct discovery lies within its simplicity. Online shops can register
directly by submitting their service endpoint to price comparers like Elm@r. The online
shops avoid having to acquire technical knowledge of discovery mechanisms such as
UDDI and ebXML registries.

A drawback of this approach is the lack of automation. Online shops must discover price
comparers and then submit their endpoint to all price comparers manually. Finding and
keeping track of price comparers is cumbersome. Submitting the endpoint to price com-
parers involves human interaction, which is rather time-consuming. For the price com-
parer the drawback lies within the lack of control. Price comparers cannot assure that all
online shops will submit their service endpoint, which would decrease the price com-
parer’s quality of service.

Discovery mechanisms contain information that allows organizations to discover and
make use of services of potential business partners. A provider company submits an
entry to a registry and categorizes it in ways that will make it easy to find. The service
requester can search a registry for information using a wide range of criteria. There are
currently two different discovery mechanisms, namely the UDDI registry and the
ebXML registry [To03].

IBM, SAP, and Microsoft maintain a public production UDDI registry [To03].5 An
online shop can register at any of these companies because changes made in one UDDI
registry are automatically transmitted to the other registries. In this way, the registries
appear as if there was just one single, global registry [To03].

Since the above-mentioned WSDL document is the main criteria for distinguishing
online shops from other organizations, it would be practical to associate the WSDL
document with information about the online shop. In an UDDI registry, the WSDL in-
terface definitions can be registered as UDDI tModels. The overviewDoc field in
each new tModel will point to the corresponding WSDL document. The tModels are
wsdlSpec tModels. Online shops can then associate the tModel with their
ServiceBinding using a tModelKey [CER02].

5 http://uddi.ibm.com/ubr/registry.html, http://udditest.sap.com/, http://uddi.microsoft.com/

In an ebXML registry, the WSDL document can be stored as an ExtrinsicObject.
ExtrinsicObjects are Meta data describing content whose type is not known to the
registry [OE03]. ExtrinsicObjects are often used together with
SpecificationLinks. The SpecificationLink provides a linkage between
the ServiceBinding and the WSDL.

The advantage of using discovery mechanisms is that once an online shop has registered
its services in a registry all price comparers can find it. The drawback of this approach is
that the online shops must be acquainted with the UDDI or ebXML standards.

After having presented how price comparers and online shops agree on service descrip-
tion and semantics, along with how to become known to each other, it is time to describe
how the price comparer and online shops uses these technologies to automatically col-
laborate with each other.

3.3. Online Shop Solution

In this subsection, we demonstrate the steps for online shops to set up their Web services
using the Java Web Services Developer Pack (JWSDP)6. Other Web service develop-
ment environments offer similar approaches.

Automatic Source Code Generation. The wscompile tool from the JWSDP enables
online shops to automatically generate Java source files from the WSDL definition.

Integrating the Backend System. Online shops must integrate their backend systems
into the generated source code. In this scenario online shops would provide the
shop.ws.SearchResponse object with appropriate data, see Listing 3.

Compiling and Deploying the Web service. After having integrated the backend sys-
tem, an online shop uses the wscompile and wsdeploy tool from the JWSDP to
compile and deploy the Web service.

6 http://java.sun.com/webservices/jwsdp/index.jsp

package shop.ws;

public class ShopSearchServices_Impl
 implements ShopSearchServices, java.rmi.Remote {
 public SearchResponse EANSearch(EANSearchRequest esr)
 throws RemoteException, SearchServicesException {
 SearchResponse sr = new SearchResponse();
 // enter backend data here …
 return sr;
 }
 …
}

Listing 3. Automatically generated source code.

Publishing the Web service. The final step is to publish the deployed Web service in a
registry. If the online shop uses an UDDI registry, it can associate the
ServiceBinding with the above-mentioned WSDL tModelKey.

3.4. Price Comparer Solution

Our price comparer solution is based on a multi-tiered architecture that is implemented
using Java technologies. A user can request a product using a search form on the Elm@r
Web site. The presentation layer communicates with a mediator that concurrently con-
nects with remote Web services over a Web service client. The mediator is developed in
accordance with the mediator framework proposed by [KK03].

Generate Client-Stubs. The Web service client uses client-stubs that are generated
automatically from the WSDL file using the wscompile tool from the JWSDP. Be-
cause we have a WSDL definition, we use a static stub approach for developing Web
services clients.

Search Registry for WSDL compatible Web services. For the mediator to know
which online shops to invoke the price comparer uses a registry observer to keep track
of Web services. The registry observer uses a tModelKey to search registries for
WSDL compatible Web services.

The screenshot in Figure 1 shows the user interface of our registry observer. The admin-
istrator can set the interval in which the registry observer queries the listed registries. If
the registry observer discovers a WSDL compatible Web service, it adds it to the list of
new shops where it will be evaluated for further use.

Fig. 1. Registry observer

Invoke Web services. During a real-time search request the mediator concurrently in-
vokes accepted shops by their service endpoints, see Listing 4.

3.5. Summary

Figure 2 summarizes the process of developing Web services for transmitting product
information. The process starts with a definition of the WSDL document (1). Once the
WSDL has been defined, it is published to a registry (2). Based on the WSDL, online
shops develop WSDL compatible Web services with the help of compile and deploy-
ment tools, along with minor programming efforts for backend data integration (3.a).
Afterwards the online shops publish their WSDL compatible Web services to a registry
(4). Price comparers use the standardized WSDL to automatically build client-stubs and
develop Web service clients (3.b). Searching registries for WSDL compatible Web ser-
vices the price comparers attain service endpoints of online shops (5). Finally, price
comparers and online shops communicate via SOAP messages (6).

4. Conclusion

The objective of this paper was to investigate the opportunities and challenges related to
real-time access to product information using Web services. Moreover, the aim was to
identify how to apply Web service technologies in order to attain automatic price com-
parisons. Besides the technical perspective, it was a question of finding a solution that
appeal to organizations with modest IT budgets.

import de.elmar.ws.generated.*;

public class SearchClient {
 private ShopSearchServices_Stub stub;
 public SearchClient(String shopUri) throws Exception {
 stub = (ShopSearchServices_Stub)
 (new ShopSearchServices_Impl()
 .getShopSearchServicesIfPort());
 stub._setProperty(
 javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
 shopUri);
 }
 public Product[] eanSearch(EANSearchRequest esr)
 throws Exception {
 SearchResponse sr = stub.EANSearch(
 new EANSearch(esr)).getResult();
 return sr.getProductArray();
 }
}

Listing 4. A Web service client using static stubs.

It can be concluded that the process of creating Web services based on standard inter-
face descriptions require a minor amount of work and is therefore even practicable for
small online shops. Furthermore, it enables automatic implementation, deployment,
discovery, and execution of price comparison Web services. Generally, the process can
be applied in any business scenario that relies on information transmission between
multiple providers and requesters, such as electronic markets, product search engines,
shop directories, and so on.

Despite the opportunities of Web service technologies it will be interesting to see if they
will be generally accepted in business scenarios with multiple requesters and providers.
In contrast to information extraction based on wrappers, Web services for automatic
information transmission demand involvement of information providers and requires
suitable WSDL documents. The key challenge of Web services for automatic informa-
tion transmission is therefore defining such WSDL files. Finding an industry or aca-
demic organization that will take on the challenge of defining and maintaining appropri-
ate WSDL documents constitutes another hurdle on the path to Web services
acceptance.

The authors are grateful to the three anonymous reviewers for their valuable suggestions
on an earlier draft of this paper.

References

[Br04] Brown, K.: Web Services Value Type Inheritance and Interoperability, IBM, 2004.
http://www-106.ibm.com/developerworks/webservices/

[CER02] Curbera, F.; Ehnebuske, D.; Rogers, D.: Using WSDL in a UDDI Registry.
http://www.uddi.org/pubs/wsdlbestpractices.pdf

[Ei99] Eikvil, L.: Information Extraction from World Wide Web – A Survey, 1999.
http://citeseer.ist.psu.edu/eikvil99information.html

[Ga02] Galbraith, B.; Hankison, W.; Hiotis, A.; Janakiraman, M.; Prasad, D.V.; Trivedi, R.;
Whitney, D.; Motukuru, V.: Professional Web Services Security, Wrox Presss, 2002.

[HMS02] Hansen, M.; Madnick, S.; Siegel, M.: Process Aggregation Using Web Services. In:
Bussleret al. (eds.): WES 2002, LNCS 2512, Springer-Verlag, Berlin, 2002; pp. 12–27.

2.

3.b3.a

4. 5.

6.

1.

Price
Comparer

UDDI /
ebXML

WSDL

Online
Shop

Fig. 2. The process of developing Web services for access to product information

[KK03] Kuhlins, S.; Korthaus, A.: A Multithreaded Java Framework for Information Extraction
in the Context of Enterprise Application Integration. In: ISICT’03, ACM International
Conference Proceedings Series, 2003; pp. 535–540.

[KT92] Kuhlins, S.; Tredwell, R.: Toolkits for Generating Wrappers – A Survey of Software
Toolkits for Automated Data Extraction from Websites. In: Aksit, M.; Mezini, M.;
Unland, R. (eds.): NODe 2002, LNCS 2591, Springer, Berlin, 2003; pp. 184–198.

[MSZ01] McIlraith, S.A.; Son, T.C.; Zeng, H.: Semantic Web Services. In: IEEE Intelligent Sys-
tems, Vol. 16 (2), 2001; pp. 46–53.

[OE03] OASIS/ebXML Registry Technical Committee: Registry Information Model v2.5, 2003.
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ ebrim-2.5.pdf

[To03] Topley, K.: Java Web Services in a Nutshell, O’Reilley & Assosiciates, 2003.
[VTK03] Vögler, G.; Tredwell, R.; Kuhlins, S.: The Use of Existing XML Vocabularies for Web

Services – Querying Product Information with Web Services and BMEcat. In: Proc. 4th
Int. Conf. on Object-Oriented and Internet-based Technologies, Concepts, and Applica-
tions for a Networked World (Net.ObjectDays), Erfurt, 2003.

[WSA04] W3C: Web Services Architecture, 2004. http://www.w3.org/TR/ws-arch/
[WSI04] WS-I: Basic Profile Version, 2004. http://www.ws-i.org/Profiles/BasicProfile-1.0.html

