
Using Value Types to Improve Access to CORBA Objects

Markus Aleksy and Stefan Kuhlins∗

University of Mannheim
Department of Information Systems III

D–68131 Mannheim
Germany

Tel.: +49 621 181-1642
E-mail:{aleksy |kuhlins }@wifo3.uni-mannheim.de

Abstract

In this paper, we describe a new approach to enhance
the performance of CORBA-based applications. For that
purpose, we improve access to CORBA objects with the help
of value types. In this way, only few changes are necessary
to speed up existing CORBA applications. Moreover, we
discuss several techniques for updating cache objects within
the scope of the CORBA event service. Finally, we compare
the performance of these techniques.

1. Introduction

At the present time, several techniques are available to
develop distributed applications. In the world of object-
oriented and distributed systems, theObject Management
Group’s (OMG) Common Object Request Broker Archi-
tecture (CORBA) is widely used [8]. Implemented with
CORBA, applications are independent of specific computer
architectures, operating systems, programming languages,
andObject Request Brokers(ORB). An ORB enables ob-
jects to transparently send and receive requests and re-
sponses in a distributed environment.

Since version 2.3 (December 1998), CORBA supports
two kinds of objects [8]:

• CORBA objects

• Value type objects

CORBA objectsare CORBA’s regular objects. In theIn-
terface Definition Language(IDL), these objects are de-
fined by the keywordinterface . Strictly speaking, a

∗Accepted for SNPD’01 –2nd International Conference on Software
Engineering, Artificial Intelligence, Networking & Parallel/Distributed
Computing, Nagoya Institute of Technology, Japan; August 20–22, 2001;
http://www-ishii.ics.nitech.ac.jp/snpd01/

”CORBA object” is an instance of an interface type. An
interface type specifies a set of operations that an instance
of that type must support. For arguments and return val-
ues of operations CORBA objects are passed by reference
[8]. That is, the client uses a reference to access the remote
object. Since remote calls are very expensive compared to
local calls, the use of CORBA objects in conventional algo-
rithms and data structures is not efficient.

In order to solve this problem, the OMG introduced the
concept ofvalue types[8]. A value type specifies state as
well as a set of operations that an instance of that type must
support. So, value types share many of the characteristics
of interfaces andstruct s. In IDL, value types are defined
by the keywordvaluetype .

Value type objects (strictly speaking, instances of a value
type) are passed by value when used as operation arguments
or as return values. The recipient of a parameter passed by
value is provided with a description of the object’s state.
Then, it creates a new instance with that state. It should be
noted that it is a different object and not the same instance
– which implies that it has a different identity. Once the
parameter passing operation is complete, no relationship is
assumed to exist between the two instances. That is, there is
no explicit or implicit sharing of state. Implementations of
value types are local to their creating context. Hence, their
operations are called in a local context and will not require
remote calls.

Across or within other instances, an instance of a value
type can be shared. If, for example, the same instance of a
value type is used for two parameters of an operation only
one instance is created on the receiver’s side.

Altogether, value types can be used in conventional al-
gorithms and data structures efficiently.

The remainder of this paper is organized as follows: Sec-
tion 2 shows that the use ofstruct s instead of value types
is less suitable. In Section 3, we introduce a simple ex-
ample, which is used in the following sections for demon-



Using Value Types to Improve Access to CORBA Objects 2

stration purposes. Section 4 describes how cache objects
could be notified about state changes. Section 5 contains
the main part of our work. Here, we present several de-
signs for caching techniques. In Section 6, we evaluate the
efficiency of the aforementioned techniques with some per-
formance experiments. A summary of the results is given in
Section 7. Section 8 discusses related work, and Section 9
concludes the paper with some final remarks on value types.

2. Before Value Types

The administration of lectures is a typical example for
an application where clients read objects on the server fre-
quently, but those objects rarely change. After creation, the
attributes of lectures (e.g., title, date, time, location, and
speaker) are seldom modified. If modifications are neces-
sary the new object state has to be transferred to clients.

Before value types were part of the CORBA standard,
the only way to improve performance of such applications
was to define astruct that includes the relevant attributes.
struct s are transferred by value, and thus cause less over-
head. However, they do not have methods, and therefore
access to attributes cannot be restricted. Hence, the object-
oriented principle of information hiding is violated. More-
over, if changes to state of the underlying object happen, the
struct has to be modified too.

Value types offer a new solution to the problem. Like
struct s, they are passed by value, but unlikestruct s,
they can have methods to control attribute access.

3. Example

In the scope of this paper we are restricted to sim-
ple examples. Therefore, we present our caching strate-
gies by means of a straightforwardCounter interface. A
Counter object has only one attributevalue (the value
of the counter) and two operations for incrementing and
decrementing this value (inc() anddec() , respectively).
Figure 1 contains the IDL definition of theCounter inter-
face.

Since Counter is a CORBA object, accesses to the
value attribute as well as calls of the operationsinc()
anddec() are remote calls making these calls relatively
expensive.

In comparison toCounter , CachedCounter is a
value type. Therefore, copies ofCachedCounter objects
are transferred to clients.

A CachedCounter supports the same interface as
Counter . This is expressed by the IDL keywordsup-
ports . The terminology that is used to describe value type
inheritance is directly analogous to that used to describe in-
terface inheritance. Value types may be derived from other

module CounterApplication
{

interface Counter
{

readonly attribute long value;
void inc();
void dec();

};

valuetype CachedCounter
supports Counter

{
public Counter realCounter;

};

interface CacheFactory
{

CachedCounter create();
};

};

Figure 1. IDL definitions

value types and can support an interface and any number
of abstract interfaces [8]. From the client’s point of view,
access to aCachedCounter value type is the same as
access to aCounter object, except that performance is
improved.

Clients could use theCacheFactory interface to cre-
ate CachedCounter value types. In that case, the
CachedCounter value type is created and initialized on
the server. After that, theCachedCounter value type
(bearing the same state as theCounter object) is trans-
ferred to the client and ready to use.

The first access to aCachedCounter value type
should ask for the actual state of theCounter object on
the server, because the state of theCounter object that be-
longs to theCachedCounter could have changed since
its transmission.

4. Change Notification

Through calls to the operationsinc() and dec()
clients can causeCounter objects on the server to change
their state. All clients must be notified of such state changes
so that they always work with an up-to-date copy of the un-
derlyingCounter object. One way to solve this problem
is to use the CORBA event service [7].

The CORBA event service does not belong to the COR-
BA core model; however, it was integrated into the OMG



Using Value Types to Improve Access to CORBA Objects 3

Proxy
Push

Consumer

Proxy
Pull

Consumer

Push
Supplier

Pull
Supplier

Proxy
Push

Supplier

Proxy
Push

Supplier

Proxy
Pull

Supplier

Proxy
Pull

Supplier

Push
Consumer

Push
Consumer

Pull
Consumer

Pull
Consumer

Event
Channel

Event Service

Figure 2. Different models of the event service

standard along with CORBA services [6]. The event ser-
vice is based on the ”publish/subscribe”-pattern [2]. That
is, users of the event service are divided intoevent sup-
pliers andevent consumers. Suppliers produce event data,
and consumers process event data. Event data is communi-
cated between suppliers and consumers by issuing standard
CORBA requests.

The core of the event service is the event channel. An
event channel is an intervening object that allows multiple
suppliers to communicate with multiple consumers asyn-
chronously. An event channel is itself both a consumer
and a supplier of event data. Consumers can either request
events or be notified of events; whichever is more appropri-
ate for application design and performance. Event channels
are standard CORBA objects and communication with an
event channel is accomplished using standard CORBA re-
quests. [7]

The event service provides the following models (see
Figure 2):

• Pure pull model

• Pure push model

• Mixed pull/push model

• Mixed push/pull model

In the pull model the event consumer (”pull consumer”)
plays the active role, i.e., it has to determine whether events
are available. In the push model the event consumer (”push
consumer”) behaves passively. It is informed automatically
when an event occurs. Both models are also valid for event
suppliers, but in this case the roles are reversed. That is, the
pull supplier operates passively whereas the push supplier
has to deliver events to the event channel actively.

A proxy supplier is similar to a normal supplier (in fact,
it inherits the interface of a supplier), but includes an addi-
tional method for connecting a consumer to the proxy sup-
plier. In the same way, a proxy consumer acts as a normal
consumer.

The use of the event service offers great flexibility as
well as a standard way of data exchange. Any data type
or data structure can be used to describe an event. This
information is of data typeany – it can be as simple or as
complex as necessary.

Another advantage of the event service is that it decou-
ples event suppliers and event consumers. In case of failure
of an event supplier, it can be replaced with a replica with-
out event consumers realizing this.

As shown in [9], an event service from a specific vendor
can be used together with servers and clients that rely on an
ORB from a different vendor without any problems. This



Using Value Types to Improve Access to CORBA Objects 4

could be another reason to use a standard service instead of
a self-written solution.

5. Design Considerations

In the case of CORBA objects, communication between
client and server is based on the usual access to a remote
CORBA object (see Figure 3).

Client Server

CORBA object

Figure 3. Usual access to a remote CORBA
object

Bringing value types into play, the simplest approach is
a direct communication between client and server via pull
(see Figure 4). Here, the value type object interrogates the
state of the underlying CORBA object periodically.

Client Server

CORBA object

Client Server

CORBA object

value type objectvalue type object

value type object
polling

Figure 4. Simple pull model

The upper part of Figure 4 shows creation and transmis-
sion of a value type object. This is always the first step when
value types are used.

A better approach uses the event service to decouple
client and server. In this case, communication between a
remote value type object and the underlying CORBA ob-
ject on the server can be realized via pull (see Figure 5).
This approach is characterized by a relatively complex im-
plementation of the value type object, because it contains
the whole polling logic.

In order to reduce the complexity of the value type ob-
ject’s implementation, an auxiliary CORBA object on the
client can be used (see Figure 6). The auxiliary object inter-
rogates the state of the CORBA object on the server period-
ically via pull model. In case of state changes, the auxiliary
object informs the value type object. This way, the value
type object behaves like a cache. Its implementation is sim-
ple, therefore its size is small and transfer time is short. One

Client Server

CORBA object

Client Server

CORBA object

value type objectvalue type object

value type object

pull

Event Service

Figure 5. Pull model

drawback of this approach is the need for an extra object on
the client side.

Client Server

CORBA object

Client Server

CORBA object

value type objectvalue type object

value type object

pull

Event Service

auxiliary object

Figure 6. Pull model with an auxiliary object

All approaches mentioned so far suffer from the same
problem. If the polling time is too low clients realize
changes too late. If it is too high net resources are wasted.
To overcome this problem, the CORBA object on the server
should inform its clients when state changes. For that pur-
pose, the last approach uses the push model of the event
service (see Figure 7).

As in the previous approach, an auxiliary CORBA object
on the client is needed. The reason for this is that CORBA
objects and value type objects are strictly separated. The
Portable Object Adaptor(POA) manages CORBA objects.
They are identified unambiguously by theInteroperable
Object Reference(IOR). On the other side, value type ob-
jects are not managed by the POA. They exist only in a local
context. As shown in Figures 4 and 5, a value type ob-
ject can reference a CORBA object. In the reverse case, a
CORBA object cannot reference a value type object. Hence,



Using Value Types to Improve Access to CORBA Objects 5

Client Server

CORBA object

Client Server

CORBA object

value type objectvalue type object

value type object

push

Event Service

auxiliary object

Figure 7. Push model with an auxiliary object

it is impossible that a CORBA object notifies a value type
object of state changes directly. That is left to the auxil-
iary CORBA object. It receives state changes of the origi-
nal CORBA object via push model and forwards these state
changes to the value type object. This results in a complex
implementation on the client side. The advantage is that no
unnecessary state requests take place.

On server side the CORBA object must act as event
supplier (PushSupplier or PullSupplier ), so that
client applications can be notified of state changes via the
event service. Here, a developer has different possibilities.
In the following, we describe a solution that is based on the
Counter example (see Section 3). We derive anEvent-
Counter interface fromCounter andPushSupplier
(see Figure 8). In this way,EventCounter acts as appli-
cation object and event supplier at the same time.

The CachedCounter value type has a reference to a
ProxyPullSupplier . Consequently, the client is able
to ask the event supplier via pull model of the event service
if state has changed.

6. Performance Measurements

For our performance measurements we usedVisiBro-
ker Event Serviceversion 3.2 andJavaORBversion 2.2.6.
The VisiBroker Event Serviceis implemented in C++ [1].
JavaORBis a CORBA 2.3 compliant open source imple-
mentation in Java provided by theDistributed Object Group
(D.O.G.) [3]. It is free for both commercial and non-
commercial projects. Our test environment consisted of
three computers with a 10 Mbit/sec Ethernet connection to
the Internet:

• Workstation SunUltra-1 with Solaris 2.6 and Java De-
velopment Kit (JDK) 1.2.2 (the server application ran

#include "CosEventComm.idl"
#include "CosEventChannelAdmin.idl"

module Caching
{

interface Counter
{

readonly attribute long value;
void inc();
void dec();

};

interface EventCounter : Counter,
CosEventComm::PushSupplier

{ };

valuetype CachedCounter
supports Counter

{
public CosEventChannelAdmin::

ProxyPullSupplier realCounter;
};

interface CacheFactory
{

CachedCounter create();
};

};

Figure 8. Event service based IDL definitions

here)

• PC with Intel Pentium III processor, Linux 2.2.10, and
JDK 1.1.8 (the different clients were tested here)

• Sun SPARCstation 10 with Solaris 2.5 (the event ser-
vice was hosted here)

Due to this heterogeneous arrangement with different com-
puter architectures, operating systems, programming lan-
guages, and ORB products, CORBA’s ability to interoperate
was also checked successfully.

The following four scenarios were tested:

1. Usual access to a remote CORBA object (see Figure 3)

2. Simple pull model (see Figure 4)

3. Pull model with an auxiliary object (see Figure 6)

4. Push model with an auxiliary object (see Figure 7)



Using Value Types to Improve Access to CORBA Objects 6

In each test run, the client sent 100,000 requests to the
server (one every 50 milliseconds). The state of the CORBA
object on the server was automatically changed by a thread
every 100 milliseconds. Table 1 presents the test results.

Scenario Average access time
1. 7,32114 ms
2. 0,00053 ms
3. 0,00070 ms
4. 0,00092 ms

Table 1. Test results

In the scenarios 3 and 4 the event service is used for com-
munication between the value type object and the original
CORBA object on the server. On the other hand, in sce-
nario 2 this communication is direct. It is not surprising
that the average access time in scenario 2 is lower than in
scenarios 3 and 4. One reason is that in scenarios 3 and 4
an additional computer is needed for the event service. An-
other reason is that both approaches use different data types.
In case of the direct communication (scenario 2) the value
type object ”knows” the original CORBA object. Therefore,
it can use its type directly. In contrast, the event service uses
any . Because marshalling and unmarshalling of typeany
takes more time, access times are worse. Despite this, the
event service is very flexible and useful for a wide range of
applications.

7. Summary

Each of the approaches mentioned above is associated
with certain advantages and disadvantages. The usual way
of direct access to a remote CORBA object is easy to im-
plement but has the worst performance.

The use of a value type object without an event service
offers the best performance. But the main drawback of this
approach is the direct connection to the original CORBA
object on the server. In case the server restarts or the
CORBA object migrates to another computer, the connec-
tion is lost because the IOR becomes invalid. With the help
of the event service this problem can be solved.

There are two event models (push and pull) that can be
used together with the event service. From the program-
mer’s point of view the pull model has the advantage that the
polling mechanism can be contained completely within the
value type object, there is no need for an auxiliary CORBA
object. Thus, changes of the client application can be min-
imized. A drawback of this approach is that the value type
object becomes relative complex. Therefore, transfer time
of the object increases. Introducing an additional CORBA
object that controls the polling mechanism can solve this
problem. Conversely, the maintenance costs for the client

application grow. In general, a difficulty of pull models is
the determination of the optimal polling frequency. If it is
too low clients realize changes too late. If it is too high net
resources are wasted.

In push models clients are notified of changes at the
right time automatically. Here, the main problem is that
a CORBA object on the server cannot communicate with a
value type object on the client directly. For that reason an
auxiliary CORBA object is needed. This auxiliary object
receives changes via push model and forwards them to the
value type object. Because of that, the implementation of
this approach is also relatively complex.

8. Related Work

Despite its importance, there is little related work on
value types in general, and caching techniques implemented
on basis of value types in particular. Mowbray’s approach
[5] includes an object caching technique that intercepts any
remote invocation within the client if the object is locally
available. Linnhoff-Popien [4] analyses caching and polling
techniques in case of asynchronous communication. Wag-
ner and Tari [10] develop a caching protocol. Their work
addresses the problem of including object based caching
aspects into CORBA applications with minimal impact to
existing sources and permits inter-transaction caching. But
all of those works do not consider value types. This paper
fills this gap.

9. Conclusions

Besides better performance, value type objects offer sev-
eral advantages.

• A value type object is able to support the same in-
terface as the underlying CORBA object. This is ex-
pressed by the IDL keywordsupports . If the inter-
face of the underlying CORBA object is changed the
value type object changes as well.

• After creation, value type objects are transferred in-
cluding state. Thus, they are ready to use immediately
and need no further initialization.

• Value type objects are a standardized concept that
works well with all CORBA 2.3 compliant ORBs.

• Implemented with value type objects and based on the
event service, a caching mechanism is very portable.

Value type objects have the minor drawback that one has to
define factory objects for them [8]. If ORBs with different
language mappings are used a factory object is needed for
each language.



Using Value Types to Improve Access to CORBA Objects 7

In summary, value types are very useful, especially to
improve performance of CORBA applications with caching
techniques.

References

[1] Borland. Visibroker. http://www.borland.com/visibroker/.
[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. A System of Patterns – Pattern-Oriented Software
Architecture. John Wiley & Sons, Chichester, 1996.

[3] Distributed Object Group (D.O.G.). JavaORB. http://www.
multimania.com/dogweb/indexjavaorb.html.

[4] C. Linnhoff-Popien. CORBA – Kommunikation und Man-
agement. Springer-Verlag, Berlin, 1998.

[5] T. Mowbray and R. Malveau.CORBA Design Patterns. John
Wiley & Sons, Chichester, 1997.

[6] OMG. CORBAservices: Common Object Services Spec-
ification, Nov. 1997. OMG Technical Document Number
98-07-05, ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf.

[7] OMG. Event Service Specification, 2000. OMG Techni-
cal Document Number 01-03-01, ftp://ftp.omg.org/pub/docs
/formal/01-03-01.pdf.

[8] OMG. The Common Object Request Broker: Architec-
ture and specification, editorial revision, CORBA 2.4.2,
Feb. 2001. OMG Technical Document Number 01-02-01,
ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf.

[9] M. Schader, M. Aleksy, and C. Tapper. Interoperabilität
verschiedener Object Request Broker nach CORBA 2.0-
Standard. OBJEKTspektrum, 3:72–77, 1998. http://www.
wifo.uni-mannheim.de/IIOP/.

[10] S. Wagner and Z. Tari. A caching protocol to improve
CORBA performance. InProceedings of the Australian
Database Conference (ADC’00)Canberra, Jan. 2000. http:
//goanna.cs.rmit.edu.au/˜zahirt/Papers/adc00.pdf.

http://www.borland.com/visibroker/
http://www.multimania.com/dogweb/index_javaorb.html
http://www.multimania.com/dogweb/index_javaorb.html
ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf
ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf
ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf
ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf
http://www.wifo.uni-mannheim.de/IIOP/
http://www.wifo.uni-mannheim.de/IIOP/
http://goanna.cs.rmit.edu.au/~zahirt/Papers/adc00.pdf
http://goanna.cs.rmit.edu.au/~zahirt/Papers/adc00.pdf

