
BOOSTER*Process

A Software Development Process Model Integrating
Business Object Technology and UML

Axel Korthaus and Stefan Kuhlins

University of Mannheim
Department of Management Information Systems III

D–68131 Mannheim
Germany

{korthaus|kuhlins}@wifo3.uni-mannheim.de
http://www.wifo.uni-mannheim.de/

Abstract. This paper describes a UML-based process model (called
Booster*Process) for system development founded on business object
technology. It integrates business and software engineering aspects, de-
scribes the specific modeling activities needed for business and software
system modeling and connects the various UML diagrams, particularly
taking into consideration the requirements of business objects and their
component character. It propagates a multi-level approach, starting with
use case, activity and class modeling at the organizational level, and then
shifting to analysis and design of business applications.

1 Promises of UML and Business Object Technology

Nowadays, new component technologies start to emerge rapidly as a successor
of object-oriented ideas which have eventually become the mainstream in soft-
ware industry today. They build upon the most successful concepts of object-
orientation, but go further, e.g. by defining larger-grained units of reuse com-
pared with conventional objects in object technology. These component tech-
nologies, e.g. OCX/ActiveX [15] or (Enterprise) Java Beans [23], are no longer
limited to the field of GUI components, but begin focusing on the implementa-
tion of business concepts and business logic. One of the most interesting devel-
opments in this area are OMG’s standardization efforts for so-called Common
Business Objects (CBOs) and a Business Object Facility (BOF) [17] on which
we will concentrate in this paper as a representative of those technologies. While
CBOs are “objects representing those business semantics that can be shown to
be common across most businesses”, the BOF is “the infrastructure (application
architecture, services, etc.) required to support business objects operating as

? Accepted for First International Workshop on the Unified Modeling Language
�UML�’98: Beyond the Notation, Mulhouse, France, June 3–4, 1998

http://www.wifo.uni-mannheim.de/


2 Axel Korthaus and Stefan Kuhlins

cooperative application components in a distributed object environment.” [17].
According to the CBO Working Group of the OMG Business Object Domain
Task Force (BODTF), business objects capture “information about a real world’s
(business) concept, operations on that concept, constraints on those operations,
and relationships between that concept and other business concepts. [...] a busi-
ness application can be specified in terms of interactions among a configuration
of implemented business objects.” [18] This definition reflects the object-oriented
foundation of business object technology. The vision of CBOs as both design-
time and run-time constructs comprises, above all, the goals of interoperability
of business object components, including the possibility of ad-hoc integration
(i.e. “plug-and-play”), and simplicity of design, implementation, configuration
and deployment, so that an average developer is helped to build business object
systems easily [17,22].

The CBO vision aims at a marketplace for standardized “off-the-shelf” busi-
ness objects which are easily integrated with other business objects through the
BOF and are able to interact with each other in order to perform some business
function, even if the collaboration was not planned or foreseen by their develop-
ers (for ad-hoc-integration cf. Corba Component Initiative [19]). The eventual
achievement of these goals would bring software engineering a significant step
closer to meeting the increased requirements on modern information systems
development.

For the purpose of modeling business and software systems with business ob-
jects, a suitable object-oriented analysis and design (OOA&D) method is needed
[14]. Object-oriented modeling is another area where the OMG has sought stan-
dardization and has been successful recently through the adoption of the Unified
Modeling Language (UML) in Nov. 1997 [20]. UML combines common concepts
of some earlier analysis and design methods, enhances this set with additional
modeling concepts meeting the requirements of current modeling tasks, and de-
fines notational symbols for those concepts. As a general purpose language, UML
is designed to model a wide range of different types of systems, from purely tech-
nical (non-software) through software to business systems.

In contrast to its predecessors, UML is merely a modeling language, not a
complete methodology, because there is no specification of a particular software
development process included in the standard with recommendations of how to
deal with the UML elements. The structure of a UML-based process for mod-
eling systems is strongly dependent on the kind of system under development
(e.g. business/software/technical system) as well as on other determinants (e.g.
project size). Process definitions have to state which techniques are appropri-
ate at various levels of detail during development, which deliverables have to be
produced, who should produce them, and which inspections, standards, metrics,
and tests should be used to control quality and certify system correctness [1,13].
A UML-based process for systems development founded on the business object
paradigm must span the whole range from business engineering (using business
object models) to application engineering (with an emphasis on reusing pre-built
business object software components) and business object component engineer-



BOOSTER*Process 3

ing (in order to build new business objects). In this paper, we will describe the
basics of a process model (Booster*Process) which meets these requirements.

Booster*Process is part of a project called Booster, which has just been
launched at the University of Mannheim. Booster is an acronym for “Business
Object Oriented Software Technology for Enterprise Reengineering”. Booster
will examine topics around object-oriented business and software engineering,
OMG business object and infrastructure standards, architecture, analysis, de-
sign, and implementation of distributed business object systems, component
technologies (e.g. Enterprise Java Beans [23]), business object frameworks (e.g.
IBM San Francisco [9]) etc.

2 Multi-Level UML-Based Business Systems
Development

According to [7], processes must be viewed from four aspects: process context,
process user, process steps, and process evaluation. In the following subsections,
we will concentrate on the process steps as well as on the foundations and basic
principles of Booster*Process, which describe the activities to be taken and
the UML elements to be applied during the process.

Although UML does not include a specific process, its designers had certain
basic process principles in mind which are derived from the most popular existing
methodologies – above all Booch ’93 [4], OMT [21], and OOSE/Objectory [11].
The UML documentation [20] mentions that processes using UML should be use-
case-driven, architecture-centric, iterative, and incremental. Booster*Process
sticks to these basic principles which are common practice in object-oriented
development, although the concept of use cases is not over-emphasized.

OOSTERB Process Architecture* Central UML Diagrams

System Architecture

Engineering
Business

Use Case Diagrams,
Class/Object Diagrams,
State Diagrams,
Sequence Diagrams,
Collaboration Diagrams
Component Diagrams,
Deployment Diagrams

Component Diagrams,
Deployment Diagrams,
Class Diagrams

Class/Collaboration Diagrams
Activity Diagrams,
Use Case Diagrams,

Engineering

Engineering
Application

Component Engineering
Business Object

Fig. 1. Process architecture of Booster*Process

The most important foundation of Booster*Process is a multi-level ap-
proach to business object system development, which is represented by a process



4 Axel Korthaus and Stefan Kuhlins

architecture. This multi-level process architecture defines a framework for the
activities which have to be performed. The macro process constituted by the
architecture levels of Booster*Process is broken down into micro processes,
which roughly reflect the well-known activities of requirements gathering, object-
oriented analysis, design, implementation, and test. The macro process architec-
ture of Booster*Process is shown in Fig. 1. As can be seen from the figure,
the levels business engineering, system architecture engineering, application en-
gineering, and business object component engineering are distinguished. Each of
these levels is described by a micro process (cf. Subsect. 2.1-2.4). The different
kinds of arrows indicate more or less significant directions of information flow
and express the principle of iterations and increments, which can be found even
in the macro process depicted in Fig. 1. On the right side, those UML diagrams
are listed that are most important for the respective engineering activities.

While business and software engineering activities have different viewpoints
and different levels of abstraction, they are not independent of each other. Mod-
eling business goals and processes is the basis for deriving requirements on the
information systems needed to support the business. New information system
technologies, on the other hand, influence the way how the business processes
are to be shaped to provide the best customer value. Therefore, it is very im-
portant to integrate these different viewpoints within a comprehensive process,
using the same underlying technologies, i.e. UML modeling and business object
concepts (see e.g. Taylor’s ideas [24] of “convergent engineering”).

System architecture engineering serves for designing a stable system archi-
tecture as a basis for the development of a number of related applications. Fortu-
nately, the BOF RFP [17] already suggests a basic system architecture for OMG
business object systems (see Subsect. 2.2). This basic layered architecture has
to be refined by company-specific enhancements.

Application engineering is an activity resulting in a new software application
for the organization. Its most important characteristic is the reuse of pre-existing
business objects, at the modeling level as well as at the software component
level. Business object component engineering is the process of designing and
implementing new business object components for reuse. This activity may be
independent of a concrete application engineering process. Similar distinctions
between these two kinds of processes can be found in several approaches: [1], for
example, distinguish between solution projects and component projects, while
[13] speak of application system engineering and component system engineering.

The normal course of activities begins with a business engineering process as
the starting point, followed by a system architecture engineering process. When
the system architecture is defined, several application engineering processes will
be performed, concurrently with several business object component engineering
processes, which are a result of the requirements generated by the application
engineering processes, or which independently produce components for future
needs, in the sense of a domain engineering activity. In the following subsections,
the individual levels of Booster*Process are described in detail.



BOOSTER*Process 5

2.1 Business Engineering

A key characteristic of Booster*Process is that it starts at the enterprise level
with a business (re-)engineering activity. Part of a successful business (re-)en-
gineering activity is the modeling of the business with its goals, rules, resources,
actions, workflow etc. UML provides a number of diagrams which are very use-
ful for this purpose, namely use case diagrams, class diagrams, and activity
diagrams (cf. [14]). [12] describe a process for object-oriented business engineer-
ing, which nearly exclusively builds on use cases for modeling business processes.
Booster*Process takes up those ideas, but supplements the use case models
with activity diagrams and high-level class models. The basic steps in business
engineering follow the pattern of those described by [13], but are adapted to the
needs of Booster*Process:

– Formulate a business vision: Define the rationale and the goals of the BPR
activity, discuss it with managers and employees, consider new technologies
which might be helpful to improve the business, formulate objectives and
high-level descriptions of future business processes.

– Reverse engineer the existing business: Build use case models, class models,
and activity models of the existing business structures and processes to be
improved in order to facilitate a detailed problem identification and analysis.
Transform perceived business concepts into suitable business object types,
i.e. entity, process and event business objects.

– Forward engineer and implement the new business: Produce a detailed de-
scription of the new processes and the internal organization of the business
in the form of new versions of the use case, class and activity models. Identify
suitable business objects and map them to standardized Common Business
Objects and existing domain specific business objects as early as possible in
the process. Identify areas of operation which can be supported by business
information systems. Implement the new business incrementally and develop
the associated software systems.

In the context of business engineering, use cases appear as business use cases.
Business use cases model sequences of work steps performed in a business sys-
tem which produce a result of perceived and measurable value to business actors.
Business actors are roles that people or external systems in the environment play
in relation to the business. The business use cases, which model business pro-
cesses, should be detailed with the help of high-level class and collaboration
models, expressing the internal realization of the business processes by workers
with appropriate competencies and a number of business objects the workers
work with. In order to facilitate the distinction between UML models at the
business and the software level, UML will be adjusted appropriately for business
engineering activities in Booster*Process by making use of suitable enhance-
ment techniques such as stereotypes, tagged values and constraints, similar to
the UML Extension for Business Modeling which is part of the UML documen-
tation [20]. Furthermore, we recommend defining new stereotypes to be able to
express a taxonomy of special kinds of business objects (see above). All models



6 Axel Korthaus and Stefan Kuhlins

produced during business engineering should be arranged in a top-level package
labeled with the stereotype �business system�.

The realization of use cases should not only be modeled by class and col-
laboration diagrams, but also by activity diagrams, which are very suitable for
expressing workflow and parallel activities. Activity diagrams are similar to con-
ventional approaches to modeling business processes (e.g. Event Driven Process
Chains, see [16], thus making additional modeling techniques apart from UML
superfluous. Like use cases, activity diagrams are not object-oriented in nature
and thus render the mapping to object-oriented concepts more difficult. Ac-
tivity diagrams can help identify activities in the business processes that can
be executed or supported by information systems. This is where the transition
to application engineering takes place. A rule of thumb regarding the mapping
from the business models to models of the information systems could be that
each business use case, described by an activity diagram, might be supported by
and mapped to several information system use cases. Some of the internal work-
ers identified and even some of the business actors might become actors in the
information system use cases. Information system use cases might correspond
with process business objects, and some of the business objects identified in the
high-level class models might be represented by entity business object packages
in the information system models.

To enable the extensive reuse of existing business object components, their
integration must be considered as early in the system life cycle as possible. There-
fore, existing business object specifications must be matched with the business
concepts identified during business engineering. What is needed in order to sup-
port this is the standardization of documentation and specification techniques
for business object components. The BOCA (Business Object Component Archi-
tecture) submission [6] to the CBO/BOF RFP [17] represented the first step in
this direction, because it comprised a Component Definition Language (CDL),
which was designed to rigorously specify business object components. Unfortu-
nately, the work had to be stopped because of technical difficulties, but at the
moment of writing, new Business Object RFPs are being prepared which will
probably continue the work on BOCA and CDL (so we will refer to the current
BOCA proposal in this paper). For convenience and to be able to express more
of the semantics, CDL specifications should be supplemented by suitable UML
models describing interfaces, structure, and behavior of the components.

While the standardization of a business object specification technique is a
basic requirement, the standardization of CBOs has the additional advantage
that even business terminology and semantics are clearly defined, too. Using
these standardized semantics and integrating the UML diagrams associated with
existing business objects with the models of the system under development, it
should be possible to begin reuse activities already at the business engineering
level. The earlier the mapping to existing business object components occurs,
the better chances are of quick information systems implementation through
assembly of existing software components. Thus, business modeling activities



BOOSTER*Process 7

should be performed with strict adherence to standardized CBO terminology
and semantics where possible.

2.2 System Architecture Engineering

The intrinsic complexity of modern large-scale information systems can be man-
aged best with a good software architecture, which, for example, enables parallel
development activities. The goal of architectural modeling is to define a robust
framework within which applications and subsystems such as business object
components may be developed. The system architecture provides the context
for defining how applications and business object components interact with one
another to perform the needed business functions. As a common base from which
all project teams work, a good architecture increases the reusability on system
development projects.

For applications built from business object components, the basic architec-
ture required will be part of the OMG standard. Figure 2 shows the proposed
architecture for business objects. Integrated in OMG’s Object Management Ar-
chitecture (OMA), which includes a reference model for distributed object com-
puting and defines OMG’s objectives and terminology, the Business Object Fa-
cility (BOF), based on CORBA, provides the infrastructure for CBOs, domain
specific business objects, and enterprise specific business objects. This is the ba-
sic layered architecture on which all business object systems will be based. The
software is organized in layers according to this layered architecture. Objects
and components in lower levels are more general than those in higher levels and
encapsulate technical details about transactions, persistence etc. with which the
developer and user of higher-level components does not want to be concerned.
The application engineering process uses the different kinds of business objects
to assemble them into software applications. The business object component
engineering process produces business objects fitting the architecture of Fig. 2.

The generic architecture for business objects must be enhanced by an enter-
prise-specific, change-tolerant application systems architecture, which defines
subsystems (using UML packages and components) and defines clear interfaces
to reduce communication overhead and to allow graceful system evolution over
time. It should be decided which parts of the system are most stable and which
will change frequently in order to arrive at a good subsystem organization.

UML provides sufficient modeling capabilities to clearly distinguish between
the logical and the physical architecture of the system. While the logical architec-
ture is expressed in the form of class diagrams, for the most part containing only
packages, interfaces, and dependency relationships, the physical architecture is
modeled by component and deployment diagrams (cf. Fig. 1). UML packages on
the logical level and components on the physical level are very important during
architectural modeling, because they allow the partitioning and control of the
overall software structure. At the logical level, both legacy systems that must be
wrapped to fit into the architecture and large-grained business objects identi-
fied during business modeling are modeled as packages. Clear interfaces between



8 Axel Korthaus and Stefan Kuhlins

Objects
Business
Objects

Enterprise Specific Business Objects

Financial
Business
Objects

Manufacturing
Business

Other

Common Business Objects

Business Object Facility

CORBA, CORBAservices, CORBAfacilities

Fig. 2. Architecture for business objects [17]

these packages have to be defined, so that the packages can be allocated to dif-
ferent teams. Apart from class and component diagrams, deployment diagrams
can be useful in structuring the physical architecture and in initial consideration
of the run-time distribution of the components already known.

The iterative and incremental micro process of system architecture engineer-
ing comprises the following activities:

– Capturing requirements: Using the results of business engineering as input
and doing further research (e.g. interviews etc.), the global needs and expec-
tations of the (internal) customers and end users must be gathered and mod-
eled, often with the help of use case diagrams; furthermore, non-functional
requirements have to be analyzed in terms of an overall quality plan;

– Perform global analysis: Through examination of the requirements, candi-
date applications and business object components should be identified and
modeled as packages. Domain analysis activities as well as feedback from
previous application engineering projects about needs for reusable business
object components can contribute to the results;

– Architectural design: As much as possible of the overall architecture should
be specified on a design level. This includes the precise definition of fa-
cades (see Subsect. 2.4) and interfaces of the applications and business object
components to be developed, the legacy systems to be integrated, and the
technology components for lower system levels (e.g. ORBs, BOF). For this
purpose, it might be necessary to begin a more detailed behavioral modeling
involving the use of UML interaction diagrams (not mentioned in Fig. 1).

– Implementation and test of the layered architecture: At this point the pack-
ages identified have to be implemented (if not already in existence), which
involves application engineering and business object component engineering.
Finally, the system functionality has to be tested on a global level.



BOOSTER*Process 9

In analogy to the business engineering level, UML should be adjusted appropri-
ately for software engineering based on business object technology. This means
that a suitable version of UML has to be defined to meet the given needs. Pro-
vided that the approach of the BOCA proposal [6] is followed up, business object
systems will have to be specified in CDL (similar to IDL specifications of CORBA
objects). The BOCA metamodel would thus become a design target for the UML
models, so that an appropriate UML extension must be defined to facilitate the
mapping between UML and CDL.

2.3 Application Engineering

Application engineering is the process during which single business applications
are implemented that directly serve the business by supporting the business
processes. Since the vision of OMG business objects comprises a considerable
simplification of developing business information systems, the goals of applica-
tion engineering in Booster*Process are to develop solutions quickly, but on
a sound, evolving architectural base, thus producing applications that confer
early user benefits at minimum costs and leverage existing legacy systems where
possible, while maintainability is retained. These goals are sometimes subsumed
under the term Rapid Architectural Application Development (RAAD), as op-
posed to Rapid Application Development (RAD), where no models are produced
and no system architecture is designed [1].

.exe.class

UML Models
Business Object

Analysis Design

Implementation

Business Object
Components

e.g.

Fig. 3. Reuse-oriented micro process for application engineering

Application engineering is very much like conventional software engineering
approaches described in literature, extended by aspects of reusing existing busi-
ness objects. The micro process to be followed is composed of the classical ac-
tivities of object-oriented analysis, design, implementation, and test, performed
iteratively and concurrently in part and involving the complete set of UML dia-
grams to express structure, behavior, and algorithms of the application system.
On the right side of Fig. 3, these activities are shown (except for testing) ac-
cording to the baseball model of object-oriented software engineering described



10 Axel Korthaus and Stefan Kuhlins

in [5]. The left side shows how the process uses a combination of model-based
reuse and component-based reuse. During analysis and design, the developers
permanently assess the possibilities of reusing existing business object specifica-
tions (the types of UML diagrams and modeling elements used for this purpose
are described in Subsect. 2.4). If appropriate specifications can be found and
integrated in the modeling process, this will lead to reuse and assembly of the
corresponding business object components during implementation.

Analysis starts with the definition of use cases and actors, who will inter-
act with the application. As already stated, these requirements can be partially
derived from the results of business modeling. More information has to be un-
covered in cooperation with the customers and end users to specify the differ-
ent usage scenarios of the application. If possible, existing use case descriptions
belonging to large-grained business object components should be retrieved and
used. The second step is to build an analysis model, which should be independent
of the technical details of the specific implementation environment. The analysis
model shows structural and behavioral aspects of the problem domain. There-
fore, class and object diagrams, collaboration diagrams, sequence diagrams, and
state diagrams are produced. There are several heuristics about how to identify
the modeling elements in this phase, starting from the specified requirements.
The realization of the use cases, for example, should be shown by sequence di-
agrams and collaboration diagrams. The UML notation for patterns can be of
help here, and available business patterns stemming from business object doc-
umentations should be searched and integrated at this point in preparation for
component reuse. During design, technical details are added and the models are
adjusted to fit the concrete conditions of implementation. Component diagrams,
which contain representations of the runtime business object components, and
deployment diagrams are added to the set of models. In order to prepare for
the implementation in the BOF environment, the business objects have to be
specified in CDL at this point. Probably, future UML CASE tools will provide
features for transforming UML models into textual CDL specifications. In the
implementation phase, those parts of the system that could not be assembled
by pre-existing components have to be implemented, existing business object
components have to be customized and some glue code may have to be written.

2.4 Business Object Component Engineering

Business object component engineering is the process which delivers common,
domain specific or enterprise specific business objects. Provided that a market-
place for business objects evolves, non-software enterprises will primarily have to
deal with the production of their own enterprise specific business objects, while
more generic business objects will be purchased from component suppliers. De-
livery of business object components is iterative and incremental, no less than
application delivery, but the level of rigor and detail is much greater, since the
components have to have a high level of quality in order to be reused frequently.

If business object component engineering were restricted to delivering run-
time components, reuse would be very hard. Instead, the components must be



BOOSTER*Process 11

documented in a way suitable to facilitate understanding and retrieval by reusers
to allow reuse in early phases of system development, before too many design
decisions have been made that cannot be matched with the available components
in the implementation phase.

While textual CDL specifications are the most rigorous and system-specific
tool for documentation, they need to be supplemented by UML models that can
be built into the software models during application engineering. It is not suffi-
cient to model the software units as UML components with clearly defined inter-
faces, because more information about the semantics is needed for reuse. Typical
usage patterns, modeled as collaborations, allowed sequences of messages, repre-
sented by state diagrams and illustrated by exemplary sequence diagrams, and
the business concepts implemented, modeled with the help of class diagrams,
can ensure the usability of the components. What can be seen and used by a
reuser of the component is called the external design of the business object com-
ponent. It does not necessarily need to reveal the internal implementation of the
component. The internal implementation again builds upon the complete set of
UML diagrams. Only those internal aspects of a business object component that
must be known to be able to reuse it should be exported via facades (see [8]),
which represent a simplified model of the component and reveal only those parts
that need to be directly visible and understood by the application developer.

Input to the business object component engineering process are the require-
ments, models and documents produced during business engineering, potential
domain analysis activities and, primarily, the needs of application systems under
development. A new business object component finally has to be modeled as a
UML package that contains the implementation files as well as the documenta-
tion and usage guidelines.

3 Conclusion

In this paper, we have described basic elements of a new business and soft-
ware system development process model, which uses the UML as its modeling
language and focuses on the concepts of OMG business object technology (but
could easily be adapted to other business component technologies, e.g. Enter-
prise Java Beans [23]). We have tried to emphasize the necessity of an integrated
approach to business and software engineering, building on a clearly defined and
stable underlying business object system architecture in order to provide for
ease of system enhancement and modification and to allow the seamless integra-
tion of business object components conforming to OMG standards, and we have
suggested the usability of activity diagrams for business process modeling.

Booster*Process will have to evolve and to be adapted to the emerging
and still changing business object technology. Possibilities of tool support for the
process have to be considered explicitly and the role of business object specifica-
tion has to be clarified. Furthermore, the relationships to important non-OMG
standards such as RM-ODP [10] have to be examined in order to provide con-
formance. It appears that the specialized architecture of Booster*Process can



12 Axel Korthaus and Stefan Kuhlins

easily be mapped to the more general viewpoints architecture of RM-ODP. An
important element of our future work will be the evaluation of Booster*Process
in the context of a number of software development projects.

References

1. Allen, P. and Frost, S. (1998): Unravelling the Unified Modeling Language. Appli-
cation Development Advisor, SIGS Publications, Jan.

2. Atkinson, C. (1997): Adapting the Fusion Process. Object Mag., Nov., 32–39.
3. Boehm, B.W. (1976): Software Engineering. IEEE Transactions on Computers 25

(12), 1226–1241.
4. Booch, G. (1994): Object-Oriented Analysis and Design with Applications. 2nd ed.

The Benjamin/Cummins Publishing Company, Redwood City, CA.
5. Coad, P. and Nicola, J. (1993): Object-Oriented Programming. Yourdon Press,

Englewood Cliffs, New Jersey.
6. CBOF (1998): Combined Business Object Facility – Business Object Compo-

nent Architecture (BOCA) Proposal. OMG Business Object Domain Task Force
BODTF-RFP 1 Submission. Rev. 1.1. OMG Doc. bom/98-01-07.

7. Eriksson, H.-E. and Penker, M. (1998): UML-Toolkit. Wiley Computer Publishing,
New York.

8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994): Design Patterns –
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mas-
sachusetts.

9. IBM (1998): IBM San Francisco. IBM Inc. http://www.ibm.com/Java/

Sanfrancisco/ (May 1998).
10. ISO/IEC (1995): Reference Model of Open Distributed Processing. ISO/IEC

10746-1 – 10746-4. http://www.iso.ch/ (May 1998)
11. Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992): Object-

Oriented Software Engineering – A Use Case Driven Approach. Addison-Wesley,
Wokingham, England.

12. Jacobson, I., Ericsson, M. and Jacobson, A. (1995): The Object Advantage – Busi-
ness Process Reengineering with Object Technology. Addison-Wesley, Wokingham,
England.

13. Jacobson, I., Griss, M. and Jonsson, P. (1997): Software Reuse – Architecture,
Process and Organization for Business Success. Addison Wesley Longman, Harlow,
England.

14. Korthaus, A. (1998): Using UML for Business Object Based Systems Modeling. In:
Schader, M. and Korthaus, A. (eds.): The Unified Modeling Language – Technical
Aspects and Applications, Physica, Heidelberg (1998), 220–237.

15. Microsoft (1998): Microsoft COM Homepage. http://www.microsoft.com/com/

(May 1998).
16. Nüttgens, M., Feld, T., and Zimmermann, V. (1998): Business Process Model-

ing with EPC and UML – Transformation or Integration? In: Schader, M. and
Korthaus, A. (eds.): The Unified Modeling Language – Technical Aspects and Ap-
plications, Physica, Heidelberg (1998), 250–261.

17. OMG (1996): Common Business Objects and Business Object Facility. Common
Facilities RFP-4. Object Management Group. OMG Doc. cf/96-01-04.

18. OMG (1997): Business Object DTF – Common Business Objects. Object Manage-
ment Group. OMG Doc. bom/97-11-11 Version 1.3.

http://www.ibm.com/Java/Sanfrancisco/
http://www.ibm.com/Java/Sanfrancisco/
http://www.iso.ch/
http://www.microsoft.com/com/


BOOSTER*Process 13

19. OMG (1997): CORBA Component Model RFP. Request for Proposal. Object Man-
agement Group. OMG Doc. orbos/96-06-12.

20. OMG (1997): The Unified Modeling Language. Vers. 1.1, 1 Sept. 1997, Docu. Set,
Rational Software Corp. et al., OMG Doc. ad/97-08-03 – ad/97-08-08.

21. Rumbaugh, J., Blaha, M., Remerlani, W., Eddy, F., and Lorensen, W. (1991):
Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ.

22. Sims, O. (1994): Business Objects – Delivering Cooperative Objects for Client-
Server. IBM McGraw-Hill series. McGraw-Hill Book Company, London.

23. Sun (1998): Enterprise Java Beans 1.0 Specification. Sun Microsystems Inc. http:
//java.sun.com/products/ejb/ (May 1998).

24. Taylor, D. (1995): Business Engineering with Object Technology. Wiley Computer
Publishing, New York.

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/

	BOOSTER*Process

