
Toolkits for Generating Wrappers
A Survey of Software Toolkits for Automated Data Extraction from Web Sites

Stefan Kuhlins and Ross Tredwell

University of Mannheim
Department of Information Systems III

D-68131 Mannheim
Germany

{kuhlins, tredwell}@uni-mannheim.de

Abstract. Various web applications in e-business, such as online price com-
parisons, competition monitoring and personalised newsletters require retrieval
of distributed information from the Internet. This paper examines the suitability
of software toolkits for the extraction of data from web sites. The term wrapper
is defined and an overview of presently available toolkits for generating wrap-
pers is provided. In order to give a better insight into the workings of such tool-
kits, a detailed analysis of the non-commercial software program LAPIS is pre-
sented. An example application using this toolkit demonstrates how acceptable
results can be achieved with relative ease. The functionality of the program is
compared with the functionality of the commercial toolkit RoboMaker and the
differences are highlighted. With the aim of providing improved ease-of-use
and faster wrapper generation in mind, possible areas for further development
of toolkits for automated web data extraction are discussed.

1 Introduction

The World Wide Web (WWW) has become one of the most important connections to
various sources of information. The infrastructure of the WWW was originally devel-
oped for use by humans [10]. A large proportion of the data is embedded in Hypertext
Markup Language (HTML) documents. This language serves the visual presentation
of data in Internet browsers, but does not provide semantic information for the data
presented [3]. This form of data presentation is, therefore, inappropriate for the de-
mands of any automated, computer assisted information management system. In par-
ticular, if data from different sources needs to be combined, it is necessary to develop
special and often complex programs to automate the data extraction [8]. In a large va-
riety of scenarios, software routines (so-called wrappers [1, 10, 21]) for automated
data extraction from various Internet sources are a necessity. For example, consider-
ing the vast number of online shops already offering their goods and services on the
Internet, it is virtually impossible to manually retrieve all of the information necessary
for a comprehensive and up-to-date price comparison. Automatic online monitoring
of competitors is another potential e-business application ideally suited to the use of
wrappers. For instance, it is a tedious task to manually check competitors’ web sites
for any changes in product prices on a regular basis. Wrappers can help to automate
such procedures.

Accepted for Net.ObjectDays 2002: Objects, Components, Architectures, Services and Ap-
plications for a Networked World, http://www.netobjectdays.org/

mailto:kuhlins@uni-mannheim.de
http://www.netobjectdays.org/

Kuhlins, Tredwell: Toolkits for Generating Wrappers 2

As the manual coding of wrappers is a time-consuming and error-prone process,
different methods have been proposed to automate the wrapper generation process. In
recent work, efforts have been made to categorise toolkits according to the methods
they apply [12]. We take a different approach that is more application oriented and
aim to demonstrate the extent to which toolkits for generating wrappers can simplify
and speed up the development of software applications for data extraction from het-
erogeneous Internet sources.

This paper presents an overview of toolkits for the generation of wrappers. Firstly,
the meaning of the term wrapper and its role in the field of information management
is explained. In the following section, the basic attributes of wrapper-generating tool-
kits are described. Thereafter, a number of currently available toolkits and their main
features are presented. Special and unusual attributes are briefly highlighted and ex-
plained. Section 4 provides a closer examination of LAPIS (Lightweight Architecture
for Processing Information Structure), a non-commercial toolkit. Details of the most
important features of this application are presented and its simple and easy to learn
scripting language is described. The ability to integrate external applications into this
toolkit is highlighted. Additionally, the functionality of this program is demonstrated
using a meta price comparison as a basic example of the wide range of possible appli-
cations for such toolkits. Section 5 highlights the strengths and weaknesses of the
LAPIS toolkit in comparison with RoboMaker, a commercial wrapper-generating
program. The paper concludes with an evaluation of the suitability of currently avail-
able toolkits for generating wrappers and a discussion of potential areas for further
development.

2 Wrapper Definition

Wrappers are specialised program routines that automatically extract data from Inter-
net web sites and convert the information into a structured format. More specifically,
wrappers have three main functions. Firstly, they must be able to download HTML
pages from a web site. Secondly, search for, recognise and extract specified data.
Thirdly, save this data in a suitably structured format to enable further manipulation
[6]. The data can then be imported into other applications for additional processing.
According to [20], over 80% of the published information on the WWW is based on
databases running in the background. When compiling this data into HTML docu-
ments the structure of the underlying databases is completely lost. Wrappers try to re-
verse this process by restoring the information to a structured format [21]. With the
right programs, it is even possible to use the WWW as a large database. By using sev-
eral wrappers to extract data from the various information sources of the WWW, the
retrieved data can be made available in an appropriately structured format [4]. As a
rule, a specially developed wrapper is required for each individual data source, be-
cause of the different and unique structures of web sites. The WWW is also extremely
dynamic and continually evolving, which results in frequent changes in the structures
of web sites. Consequently, it is often necessary to constantly update or even com-
pletely rewrite existing wrappers, in order to maintain the desired data extraction ca-
pabilities [1].

Kuhlins, Tredwell: Toolkits for Generating Wrappers 3

The Extensible Markup Language (XML) has the potential to alleviate such prob-
lems. Whereas HTML is presentation oriented, XML keeps the data structure separate
from the presentation. However, it may take some time before all data is provided in
the XML format, and it remains to be seen whether XML can establish itself in all ar-
eas of electronic information processing [11]. Taking into consideration that XML
documents are based on varying Document Type Definitions (DTD) or XML-Schemas,
the current problems regarding data extraction from HTML documents can be re-
duced, but not completely resolved. Wrappers will, therefore, retain an important role
in the integration of data from WWW sources for some time to come.

3 Wrapper-Generating Toolkits

Every wrapper can be manually developed from scratch, for example, in an estab-
lished programming language using regular expressions. For smaller applications,
this can prove to be a sensible approach. However, if the use of a larger number of
wrappers is required, this inevitably leads to the use of so-called toolkits, which can
generate a complete wrapper based on user defined parameters for a given data
source. One of the most important features of generated wrappers is the format in
which the extracted data can be exported. If, for example, the extracted data is con-
verted into an XML format, then it can be imported and processed by a large number
of software applications.

Toolkits for generating wrappers can be differentiated in a number of ways. They
can be categorised by their output methods, interface type, web crawling capability,
use of a graphical user interface (GUI) and several other characteristics. Laender et al.
[12] categorise a number of toolkits based on the methods used for generating wrap-
pers. These methods include specially designed wrapper development languages and
algorithms based on HTML-awareness, induction, modelling, ontology and natural
language processing. However, a detailed presentation of such technical details is be-
yond the scope of this survey paper. Therefore, the toolkits are simply divided into
two basic categories based on commercial and non-commercial availability.

The wrapper generating programs within both of these categories offer several dif-
ferent means of user interaction. Some toolkits are solely based on command lines
and require routines developed in a pre-determined unique scripting language, in or-
der to generate an appropriate wrapper for a specified data source. These wrapper de-
velopment scripting languages are used in standard text editors and can be seen as ap-
plication specific alternatives to general-purpose languages such as Perl and Java. A
large number of toolkits offer a GUI, whereby the relevant data within an HTML
document is highlighted with a mouse, and the program then generates a wrapper
based on the specified information. Several toolkits combine both of the features de-
scribed above. Initially, the relevant data is highlighted with a mouse and the program
generates a wrapper from this input. If the automatically generated result does not
meet the specified requirements, the user has the additional possibility of implement-
ing changes via an editor integrated within the toolkit. Whether frequent corrections
are necessary or not depends, largely, on the underlying algorithms and the functional
maturity of the toolkit.

Kuhlins, Tredwell: Toolkits for Generating Wrappers 4

The tables below provide, in alphabetical order, an extensive overview of currently
available toolkits for generating wrappers (a more detailed overview is available
online, also covering toolkits that are no longer accessible [9]). Table 1 lists non-
commercial programs and tables 2 and 3 display commercial programs. This section
concludes by emphasizing and briefly explaining some of the more sophisticated fea-
tures of the various programs.

Table 1. Overview of Non-Commercial Toolkits

Toolkit Output
Data API Open

Source
Source
Code

Web
Crawling GUI Editor Scripting

Language
Tool

Support

Araneus XML, Text only API Java –– –– –– EDITOR ––

BYU Text –– Java –– –– –– ontologies ––

DEByE
XML, Text,
SQL Data-

base
–– –– Java –– ––

Jedi XML, Text –– Java –– –– JEDI ––

LAPIS XML, Text Java
Text

Constraints

Road Runner XML, Text –– Java –– –– regular
expressions

Toolkit
not yet

available

Scout Text Java –– –– –– regular
expressions ––

SoftMealy Text Java –– –– ––

TSIMMIS Text –– C/C++ –– –– –– –– ––

WebL XML, Text Java ––
()
third
party

WebL
()

News-
groups

Web Sphinx Text –– Java
ORO Matcher

reg. expr. ––

WIEN Text –– Java –– –– –– ––

XWrap XML
(incl. DTD)

()
only

Wrapper
Java –– –– ––

Kuhlins, Tredwell: Toolkits for Generating Wrappers 5

Table 2. Overview of Commercial Toolkits

Company Toolkit Demo
Version

Output
Data

Database
Connec-

tivity
API Web

Crawling GUI Editor Scripting
Language

Caesius
Software

WebQL
(Web Query
Language)

–– Text WebQL

Connotate
Technologies vTag –– XML –– ––

Crystal
Software TextPipe

XML,
Text ()

third party

Perl,
VBScript,
JScript,
Rexx,
Python

Data
Junction

Content
Extractor

XML,
Text CXL

Extradata
Technologies Unwwwrap

Text,
Table ––

Plug-In for
MS Internet

Explorer

()
based on

“Bookmarks”
 –– ––

Fetch
Technologies Agent Builder –– XML,

Text –– ––

firstRain firstRain
Studio –– XML,

Text –– ––

IBM Intelligent
Miner Text –– ––

ItemField ParserStudio –– XML ––
Parser Script

Language

Kapow
Technologies RoboSuite

XML, Text,
CSV

XML/SOAP,
Import of

Java Beans

reg. expr.,
Text

Expressions

Knowmadic
Web Activity,

Integration
Suite

––
XML,

Visual Ba-
sic Object

–– –– ––

Lencom
Software

Visual Web
Task Text –– ––

Lixto
Lixto Wrapper

Toolkit,
InfoPipes

–– XML, Text,
WML ELOG

Loton Tech WebDataKit Text ––
SQL for

HTML and
XML

Orsus
Solution UnoStudio –– XML,

WML, Text
()

only prede-
fined URLs

 –– ––

Kuhlins, Tredwell: Toolkits for Generating Wrappers 6

Table 3. Overview of Commercial Toolkits (continued)

Company Toolkit Demo
Version

Output
Data

Database
Connec-

tivity

Web
Crawling API GUI Editor Scripting

Language

Republica X-Fetch
Wrapper

XML,
WML,

XHTML
–– –– . DEL

Temis Group

Online Miner,
Insight

Discoverer
Extractor

–– XML,
Text –– ––

Thunder-
stone Webinator Text

Texis
Webscript,
reg. expr.

Tropea Inc.

W4F Wrapper
Factory

(not available
anymore)

–– XML,
Text –– HEL

XSB Xrover,
EasyRover –– XML XSB

Many of the non-commercial toolkits are purely command-line based and offer
user assistance through predefined modules. These assist, for example, in establishing
a network connection or the completion and submission of HTML forms. The user
merely has to modify them to suit his specific requirements. The toolkits provide rela-
tively simple scripting languages for creating extraction rules. However, due to the
rapid pace of development of modern programming languages and the existence of
very extensive, freely available libraries with predefined classes, the use of these tool-
kits hardly speeds up or simplifies the generation of wrappers. This also explains the
lack of further development of these non-graphical programs.

The freely available toolkits stem, almost without exception, from university de-
velopment projects or from other academic research institutions. WebL is the only
toolkit that is provided by a commercial company free of charge. Whilst, for the most
part, the projects are no longer being actively pursued, except for DEByE (Data Ex-
traction by Example), LAPIS and Road Runner, there is a lack of technical backup
and further development of the programs. As several of these toolkits do not provide
currently popular output formats, they are limited in their use and often require spe-
cially implemented interfaces for the interaction with external applications.

XWrap is an exception in the category of non-commercial toolkits. Firstly, due to
licensing regulations, it can only be used online and just provides the Java source
code of the generated wrappers for use by local applications. Secondly, the output
format of the extracted data is in XML [14]. DEByE is also able to export the ex-
tracted data in XML. Using only a small number of user provided data examples,
DEByE tries to automatically recognize similarly structured data within the HTML
document [13]. Section 4 provides a more detailed examination of the non-
commercial LAPIS toolkit, which is currently still being supported and enhanced.

Almost all commercial toolkits provide the ability to output the extracted data in
XML. All commercial toolkits, without exception, include a GUI and are mouse

Kuhlins, Tredwell: Toolkits for Generating Wrappers 7

driven. One of the first commercial toolkits, W4F from Tropea Inc., uses its own
scripting language and only offers so-called “Wizards” (small graphical interfaces) as
an additional support. The program’s robust extraction rules are based on path defini-
tions within the document structure of an HTML page. These path definitions lead to
the relevant data locations [21]. However, W4F was unable to establish itself in the
market and is no longer available.

More sophisticated toolkits, such as the ones offered by Fetch Technologies, Item
Field, Kapow Technologies, Lixto and XSB do not require the highlighting of all the
data that is to be extracted. A small number of examples are sufficient for the pro-
grams to generate suitable extraction rules. Lixto, for example, can be operated by us-
ers without any HTML programming knowledge, as it does not require the user to
work with the HTML source code [2]. Thus, the user can obtain a fully functional
wrapper quickly and efficiently. Fetch Technologies supposedly goes one step further
and generates wrappers that are capable of coping with structural changes of web
sites, in as much as they check their own functionality and automatically implement
corrections if necessary [5]. A similarly comprehensive toolkit, RoboSuite from Ka-
pow Technologies, is discussed in Section 5.

The stability and reliability of wrappers is highly dependent on the data extraction
methods that the toolkit applies. For example, toolkits that only rely on HTML struc-
tures to identify relevant data are very vulnerable to the slightest web site changes and
frequent repairs to the wrappers may be necessary. Method combinations provide
greater robustness, such as the combination of HTML path structures and pattern rec-
ognition methods. The reliability of a generated wrapper does not necessarily depend
on the way a user interacts with the toolkit. If, for instance, the toolkit generates
wrappers based on pattern or natural language recognition, the highlighting of exam-
ple data in a browser can lead to very robust wrappers, without the user being forced
to work with the HTML source code. This is particularly true if the user is not com-
pletely dependant on the automatically applied statistical methods of the toolkit and is
able to adjust and fine-tune the resulting extraction rules.

Most toolkits can generate wrappers that have single page retrieval capabilities.
Some have the ability to automatically crawl web pages or follow a restricted number
of links. This, for example, enables the wrappers to retrieve all pages in a search re-
quest, even if the desired data is contained in several HTML documents. In general,
the ability to automatically trace links is used to retrieve all requested data contained
in web pages from one particular web site and is not necessarily intended for the im-
plementation of web robots that also follow links to unknown web sites. This survey
focuses primarily on the data extraction phase and only briefly highlights the docu-
ment retrieval phase.

4 Wrapper-Generation with LAPIS

Following the overview provided above, we now take a closer look at one of the non-
commercial toolkits to give a better insight into one of several possible approaches for
generating wrappers. This toolkit was chosen as an example, because, at the time this
research began, it was the only non-commercial, open source toolkit available that

Kuhlins, Tredwell: Toolkits for Generating Wrappers 8

was still being developed and supported. As Miller explains in [15], the syntax of
regular expressions and grammars for automatic text processing is difficult to read
and understand. Therefore, these methods have not gained general acceptance with
the majority of normal users. For this reason, it became necessary to develop pro-
grams that provided intuitive procedures for automatic text manipulation. As a result
of this research, the LAPIS toolkit was developed, opening up a range of possibilities
for text manipulation. HTML pages are nothing other than simple text documents,
enabling LAPIS to extract data and ultimately be used as a toolkit for generating
wrappers.

4.1 LAPIS Program Features

LAPIS is essentially a web browser with an integrated text editor that can be pro-
grammed to process and manipulate text documents loaded within the program [17].
The individual manual manipulation steps are contained in an executable script in a
proprietary scripting language. To start the automatic data manipulation process, the
script created by LAPIS is simply activated within the toolkit. Used as a web browser,
LAPIS is able to download all files that have a valid and unrestricted Uniform Re-
source Locator (URL) using the File Transfer Protocol (FTP) or the Hypertext Trans-
fer Protocol (HTTP). HTML pages can either be displayed as a text document show-
ing the complete source code, or the page can be presented as a standard web page, as
in every regular web browser [16].

LAPIS is equipped with the pattern recognition language “text constraints”, which
allows the user to precisely specify and restrict the required data in a given document.
In comparison with the often cryptic and difficult to read regular expressions, this
scripting language has a syntax that is extremely intuitive and easy to understand.

With the aid of additional features incorporated within the program, it is possible to
manipulate previously highlighted regions within a document. The data can be de-
leted, filtered, sorted or extracted [16]. There are several possibilities for defining
relevant data in a document. The user can manually apply the text constraints lan-
guage to define a specific pattern for all the required data, or the user can highlight
only a few relevant text regions and LAPIS will try to automatically generate a suit-
able pattern [18]. For complex HTML documents a combination of both methods has
proved successful. Firstly, LAPIS tries to generate a suitable pattern, which the user
can then manually adapt if necessary. The toolkit provides further assistance by test-
ing for mistakes in developed patterns. LAPIS achieves this by separately highlight-
ing the text areas that lie within the valid definition of a given pattern, but differ in
their structure from those regions that most commonly occur [19].

Furthermore, LAPIS has a built-in command shell, which allows the program to
process Tcl-script commands. This feature enables the invocation of external com-
mand-line programs from within LAPIS. It is possible, for example, to transfer ex-
tracted data directly to an external user program for further manipulation [17].

Kuhlins, Tredwell: Toolkits for Generating Wrappers 9

4.2 Text Constraints

The development of wrappers with LAPIS is based on the definition of text regions
within a text document. The patterns inferred by the highlighting of the relevant text
or data are defined using the implemented text constraints language. The syntax of
this scripting language can be learned quickly and is easy to read and understand.
This is due to the fact that simple English terms are used and the actual functionality
of the language is hidden in the background, so that the user does not have to concern
himself with complex programming procedures. The following example demon-
strates the region highlighting effect of the simple text constraints pattern
Number.ScientificNotation just before " Euro" on an
HTML extract of a price comparison web page for a specific digital camera (see
Fig. 1). The comparison itself is based on extracted data from several online shops.

<TD>Sony Cybershot DSC-P 50
Incl. Memory Stick</TD>
<TD align=right>429.99 Euro</TD>
<TD align=middle>Primustronix.de</TD>
 ...
<TD>Sony DSC-P50 PC/MAC
2.1 Megapixel, 3x Zoom</TD>
<TD align=right>452.55 Euro</TD>
<TD align=middle>avitos.com</TD>

Fig. 1. Text Constraints region highlighting

Various parsers are already installed in LAPIS. Amongst others, an HTML parser
with which one can directly access elements in an HTML document. It is also possi-
ble to specify restrictions within the text constraints patterns. Thus, the relevant data
regions can be restricted by using terms such as contains, first, last,
just before and after. For example, the first column of the first table in an
HTML page would be highlighted using the pattern text in first [td]. In
this way new patterns can be developed and added to the LAPIS library with a user
defined name [19]. It makes no difference to LAPIS whether parsers, regular expres-
sions, highlighting with a mouse or a combination of all three methods are used for
determining relevant text regions. All that is needed to extract or manipulate data is a
valid text constraints pattern.

4.3 Incorporating External Programs

Utilising Tcl-commands, it is also possible to store extracted data in a file or to invoke
external command-line programs. The output of any external command-line program
can be displayed in the LAPIS browser window and then be processed by the toolkit.
It is also possible to integrate LAPIS into the program routines of other applications.
This enables the specification of certain processes to be allocated to the toolkit and al-
lows the results to be processed by the main program [17]. As an example, LAPIS can
download various HTML documents from the WWW, then extract data using previ-
ously defined text constraints patterns and finally invoke a further application, which
reads in the extracted data and stores it in a database.

Kuhlins, Tredwell: Toolkits for Generating Wrappers 10

4.4 Automatic Data Extraction

Once a suitable pattern has been created for an HTML document using text con-
straints and the individual text or data manipulation steps have been defined, it is then
necessary to combine these steps into an automatic procedure. LAPIS offers an op-
tional tool for this step. Similar to a cassette-recorder, LAPIS can record the individ-
ual steps of a user whilst the data processing and manipulation is being performed in
order to generate an executable script. A script of this sort can contain, among other
things, URL addresses, instructions on completing and submitting HTML forms, text
constraints patterns, external program invocations or text manipulation commands.
By invoking such a script, the manipulation of one or more documents can be auto-
matically transacted by LAPIS, which processes the instructions contained in the
script sequentially [17].

4.5 Application Example

To demonstrate the possible application of LAPIS for the generation of wrappers, an
example in the form of a meta price comparison is presented in this section. A meta
price comparison extracts price information for a specific product from various online
price comparers and combines the information into a new price comparison. The pro-
cedure is identical to that of a meta search engine. To this end, the result pages of
three different online price comparers are downloaded, the relevant data is extracted,
then combined again in a newly created and sorted HTML table and finally presented
in a standard Internet browser. The patterns or wrappers for the individual result
pages must first be created using text constraints and are subsequently stored in the
LAPIS parser library (see Fig. 2).

prefix Wrapper
│ #
│ # WebDeShopping
│ #
│
└───prefix WebDeShopping
 │
 ├───PriceWebDe is Business.Number.ScientificNotation just before " Euro"
 ├───ProductWebDe is Text in [td] just before [td]
 │ └───contains PriceWebDe
 ├───ShopWebDe is Link contains "Haendler"
 │ └────in row contains PriceWebDe
 └───WrapperWebDe is either PriceWebDe
 ├──or ProductWebDe
 └──or ShopWebDe

Fig. 2. Wrapper for the price comparer WEB.DE

The script for the automatic processing is then developed using LAPIS (see Fig. 3).
Each of the result pages of the online price comparers is downloaded into the LAPIS
browser window. The previously developed wrappers for each price comparer are
then applied and the extracted data is provisionally stored in separate temporary files.
To further process the extracted data, a specific unique symbol (“ # ”) is used to dis-
tinguish the individual data sets in the temporary files.

Kuhlins, Tredwell: Toolkits for Generating Wrappers 11

doc -type text
[http://shopping.web.de/Suche/Fotografie+%26+Optik/Fotografie/Digitale
+Fotografie/Digitalkameras/?pricef=&pricet=&sort=&search=sony+dsc-
p50&id=-L0Sm10**sga700]
extract -separatedby " # " {Wrapper.WebDeShopping.WrapperWebDe}
save C:/LapisFiles/ExtractedData/WebDe_1.ref
...
doc -type html [java -cp c:/LapisFiles/JavaFiles/ Mediator]
sort row -by {4th cell in row} -order numeric
browse

Fig. 3. Excerpt of the LAPIS script used to automate the extraction process

When all the result pages have been processed the so-called Mediator [22], in this
case an external Java program, is invoked by LAPIS. The Mediator has the task of
combining all the extracted results into a table in a new HTML document (see Fig. 4).
This table is returned to LAPIS via the standard output of the command-line program.
The built-in HTML table-sorting feature enables LAPIS to rearrange the table rows in
price order. This drastically reduces the time-consuming conversion of prices into a
suitable data type for sorting within the Mediator. It is a good example of how effi-
ciently various programs can be integrated into the data extraction process depending
on which features are required. Finally, LAPIS invokes a standard Internet browser
and transfers the resulting HTML document to it. By clicking on the links contained
in the results page, the user can navigate to the price comparers or, in some cases,
straight to the online shops with the most attractive offers.

Resource 1 Resource 2 Resource 3

Wrapper 1 Wrapper 2 Wrapper 3

Mediator

Fig. 4. Wrapper-Mediator Interaction

Only a short time is required to understand and comprehend the text constraints
pattern language and to become familiar with the way LAPIS generates wrappers.
Quick and acceptable results can be achieved using only a few lines of scripting code.
With the possibility of integrating external programs into the data extraction process,
LAPIS is able to efficiently utilise the strengths of these programs. This leads to an
increase in overall performance and flexibility, which consequently makes LAPIS an
extremely versatile toolkit.

Kuhlins, Tredwell: Toolkits for Generating Wrappers 12

5 Comparison of LAPIS and a Commercial Toolkit

LAPIS was originally developed to automate the editing and manipulation of text
documents. With the use and combination of several of the implemented features, it is
also possible to generate wrappers for HTML documents. It does, however, lack cer-
tain features that are already a standard implementation in commercial toolkits for
generating wrappers. This includes, for instance, the processing of JavaScript com-
mands, which are used in a large number of HTML documents nowadays. Due to the
absence of this feature, these types of HTML documents are either incompletely or
inadequately presented in the LAPIS browser window. Consequently, the user is often
forced to work with the HTML source code in the LAPIS text-editing window, in or-
der to generate suitable text constraints patterns. Moreover, the processing of cookies
is not supported, which is often an essential requirement for downloading certain web
pages. In addition, it is almost impossible for a user not possessing some basic pro-
gramming skills to correctly integrate the developed wrappers and automation scripts
into the LAPIS library.

In the following paragraphs, closer attention is paid to one of the commercial tool-
kits. This will demonstrate which features a modern wrapper-generating toolkit
should provide. The RoboMaker toolkit, from Kapow Technologies’ RoboSuite, acts
as a very good example. The toolkit belongs to the category of programs that not only
offer a GUI, but also provide a built-in editor. Functionality that is missing in LAPIS,
such as the processing of cookies or the administration of generated wrappers, is al-
ready implemented and easy to use in RoboMaker.

The development of the wrappers occurs in several simple steps. Firstly, the proce-
dures that lead to the relevant HTML pages are defined. In this respect, the toolkit of-
fers standard features for automatically completing and submitting HTML forms, ena-
bling, for instance, the use of different search terms in a search form. With further
simple parameter definitions, the automatic tracing of links is also easy to master.

The next step is to highlight the structured data. Here, the extraction rules are based
on the page structure of the Document Object Model (DOM) [23] and regular expres-
sions [7]. This combination generates very robust wrappers, which do not need to be
constantly updated when the structure of a web site changes slightly. By highlighting
the relevant data on example web pages using a mouse, these robust features can be
applied by a user with very little HTML programming experience. The resulting com-
plex extraction rules are automatically generated in the background by the toolkit.
Should the user not be completely satisfied with the generated patterns, he still has the
possibility of making manual corrections to the extraction rules. This is achieved by
applying a specified scripting language using the provided editing window. It only
takes a short time to become familiar with the scripting language. RoboMaker offers a
full range of output formats. In addition to the structured XML output, the toolkit can
provide extracted data for direct transfer into a SQL database.

A further extremely useful feature of RoboMaker is the fully integrated visual de-
bugger. This enables the precise examination of a generated wrapper by running each
individual step of the wrapper program and logging the results. By using this module,
it is not only possible to find errors at their source, but it is also relatively easy to trace
what is happening in each individual step within a wrapper program. This allows a
rapid identification of the causes of an incorrect output.

Kuhlins, Tredwell: Toolkits for Generating Wrappers 13

RoboSuite contains an extra module called RoboManager. This module enables all
generated robots or wrappers to be administrated in a well-structured GUI. Therefore,
it is easy to manage several hundred wrappers at one time and, should a wrapper no
longer function properly, corrections can be effortlessly undertaken at any time. If, for
example, network problems arise that result in data sources being temporarily inac-
cessible, it is very simple to deactivate certain wrappers with RoboManager for a
specified period of time. Even predefined times for the activity of wrappers can be set
up using this module. This is, for instance, very useful when relevant data on a spe-
cific web site is only changed on a monthly basis. In order to extract updated data, the
wrapper is automatically activated once a month and after it has extracted the re-
quested information, it is deactivated again. As the wrapper is not continuously
checking for changes within a web site, the Internet traffic is kept to a minimum. To
reduce the local resources required by RoboSuite, it is possible to activate the gener-
ated wrappers from the command line using a module devoid of a GUI (RoboRunner).

6 Conclusions

It can be concluded that, in comparison to manual programming, the use of wrapper-
generating toolkits saves time in the development of wrappers for extracting data
from HTML resources.

Toolkits based purely on command lines can generate robust wrappers, but are not
easy to use and have little chance of being generally accepted. The possible applica-
tions of the other non-commercial toolkits are also limited due to the restricted num-
ber of features, as highlighted. Only a few of the currently developed non-commercial
toolkits are in a position to provide extracted data in an XML format. However, as is
demonstrated using LAPIS, it is possible to achieve acceptable results with very little
effort. If only a limited number of wrappers are required, non-commercial toolkits are
a good alternative to manual programming from scratch.

The commercial toolkits provide the necessary and most advanced features for the
professional development of a larger number of wrappers. Focusing on ease-of-use,
the most important features are the simple administration of the generated wrappers as
well as the support of current output formats. As with the non-commercial toolkits,
the robustness of the wrappers with respect to structural changes of a web site are
highly dependant on the extraction rules employed. If a wrapper depends too heavily
on a standardised document structure within a web site and relies mainly on the DOM
without combining it with other methods, then even the slightest structural changes
can cause the wrapper to malfunction.

Several methods and approaches for the generation of Internet data extraction
wrappers exist. This overview paper describes the methods used in two particular
toolkits in more detail. The reader is referred to the references section for more de-
tailed descriptions of the methods employed by other toolkits, as an in-depth review
of these is beyond the scope of this paper.

Extracting data from XML documents is far easier than from HTML files, due to
the separation of content and presentation. However, the conversion of all HTML
documents into XML involves a tremendous amount of time and effort. Additionally,

Kuhlins, Tredwell: Toolkits for Generating Wrappers 14

it is not always in the interest of web site owners if their data is extracted and used for
third party purposes, especially taking into account the widespread commercial use of
advertising banners that would be bypassed by these extraction procedures. It is,
therefore, questionable whether all HTML pages will be replaced by XML documents
in the near future.

Nowadays, a large amount of data is processed by web programming languages
and is not contained within plain HTML code. Hypertext links, for example, are often
dynamically generated by JavaScript code. Most of the current toolkits are unable to
automatically overcome this type of hurdle and require user assistance in order to cor-
rectly navigate web sites. Solving this problem would lead to major usability im-
provements for the toolkits.

Current and future advances in the field of artificial intelligence could also provide
further opportunities for the development of toolkits. For example, the possibility of
incorporating knowledge discovery applications and automated classification tools
could greatly enhance the reliability and possibilities of automation for data extraction
wrappers. Scenarios in which the user simply defines specific criteria for the desired
information and then dispatches intelligent agents to wrap previously unknown web
sites and extract the requested data are becoming feasible and are no longer pure fic-
tion. By these means, nearly all of the products and prices of various online shops
could be collected to provide a fully automatic worldwide price comparison using
relatively little development effort. Should the currently generated wrappers evolve
into more sophisticated extraction agents, then more complex types of applications
could be realised. For example, it would be possible to make research documents
from various Internet sources searchable, whereby the user only defines a topic he is
interested in and agents automatically collect and effectively summarise all of the
available online information on the requested subject. This would drastically reduce
the time currently spent on manual academic research.

Acknowledgements

The authors are grateful to Robert Baumgartner for helpful comments and his re-
search support. Moreover, we thank three anonymous reviewers for their valuable
suggestions on an earlier draft of this paper. Acknowledgements go to all software
companies and non-commercial toolkit developers that have provided evaluation ver-
sions of their toolkits and offered additional information and support. Particular
thanks go to Kapow Technologies for generously supporting this research by supply-
ing a free, temporarily fully licensed version of their RoboSuite toolkit and to Rob
Miller for developing and providing the open source LAPIS toolkit.

References

1. Adelberg, B. and Denny, M.: Building Robust Wrappers for Text Sources, Technical Re-
port 1999, http://www.ai.mit.edu/people/jimmylin/papers/Adelberg99.pdf (Aug. 2002)

http://www.ai.mit.edu/people/jimmylin/papers/Adelberg99.pdf

Kuhlins, Tredwell: Toolkits for Generating Wrappers 15

2. Baumgartner, R., Flesca, S. and Gottlob, G.: Visual Web Information Extraction with
Lixto, Paper for the 27th International Conference on Very Large Data Bases (VLDB
2001), Rome, Italy, September 2001

3. Doorenbos, R., Etzioni, O. and Weld, S.: A Scalable Comparison-Shopping Agent for the
World-Wide Web, Paper for the First International Conference on Autonomous Agents,
February 1997, http://www.cs.washington.edu/homes/weld/papers/shopbot.pdf (Oct. 2002)

4. Eikvil, L.: Information Extraction from World Wide Web – A Survey, Report No. 945,
ISBN 82-539-0429-0, July 1999

5. Fetch Technologies: Technology Overview – Reliably Extracting Web Data, White Paper,
November 2001, http://www.fetch.com/whitepapers/FetchWhitePaper.doc (Oct. 2002)

6. Golgher, P., Laender, A., Silva, A. and Ribeiro-Neto, B.: An Example-Based Environment
for Wrapper Generation, in: Proceedings of the 2nd International Workshop on The World
Wide Web and Conceptual Modeling, pp. 152–164, Salt Lake City, Utah, USA, 2000

7. Kapow Technologies: RoboSuite Technical White Paper, November 2001,
http://www.kapowtech.com/filarkiv/pdf/robosuitetechnicalwhitepaper.pdf (Oct. 2002)

8. Knoblock, C., Minton, S., Ambite, J., Ashish, N., Muslea, I., Philpot, A. and Tejada, S.:
The ARIADNE Approach to Web-Based Information Integration, 2000, in: International
Journal of Cooperative Information Systems 10(1-2): pp. 145–169, 2001

9. Kuhlins, S. and Tredwell, R.: Wrapper-Generating Toolkits, Online Overview, available
since December 2001: http://www.wifo.uni-mannheim.de/~kuhlins/wrappertools/

10. Kushmerick, N.: Wrapper Induction for Information Extraction, Dissertation 1997, Dept of
Computer Science & Engineering, Univ. of Washington, Tech. Report UW-CSE-97-11-04,
http://www.cs.ucd.ie/staff/nick/home/research/download/kushmerick-phd.ps.gz (Oct. 2002)

11. Kushmerick, N.: Wrapper Verification, World Wide Web Journal 3(2): pp. 79–94, 2000
12. Laender, A., Ribeiro-Neto, B., Silva, A. and Teixeira, J.: A Brief Survey of Web Data Ex-

traction Tools, in: SIGMOD Record, Volume 31, Number 2, June 2002
13. Laender, A., Ribeiro-Neto, B., Silva, A. and Silva, E.: Representing Web Data as Complex

Objects, in: Proceedings of the First International Conference on Electronic Commerce and
Web Technologies (EC-Web 2000), pp. 216–228, Greenwich, UK, 2000

14. Liu, L. Pu, C. and Han, W.: XWrap – An XML-enabled Wrapper Construction System for
Web Information Sources, Proceedings of the 16th International Conference on Data Engi-
neering (ICDE'2000), San Diego CA, 2000

15. Miller, R.: Lightweight Structured Text Processing, PhD Thesis Proposal, Computer Sci-
ence Department, Carnegie Mellon University, USA, April 1999, http://www-2.cs.cmu.edu/
~rcm/papers/proposal/proposal.html (Oct. 2002)

16. Miller, R. and Myers, B.: Lightweight Structured Text Processing, in: Proceedings of 1999
USENIX Annual Technical Conference, Monterey, CA, pp. 131–144, June 1999

17. Miller, R. and Myers, B.: Integrating a Command Shell Into a Web Browser, in: Proceed-
ings of USENIX 2000 Annual Technical Conference, San Diego, pp. 171–182, June 2000

18. Miller, R. and Myers, B.: Outlier Finding: Focusing User Attention on Possible Errors, in:
Proceedings of UIST 2001, Orlando, FL, pp. 81–90, November 2001

19. Miller, R. and Myers, A.: Multiple Selections in Smart Text Editing, in: Proceedings of IUI
2002, San Francisco, CA, pp. 103–110, January 2002

20. Sahuguet, A. and Azavant, F.: Web Ecology – Recycling HTML pages as XML documents
using W4F, in: ACM International Workshop on the Web and Databases (WebDB'99),
Philadelphia, Pennsylvania, USA, June 1999

21. Sahuguet, A. and Azavant, F.: Building Intelligent Web Applications Using Lightweight
Wrappers, Paper, July 2000, http://db.cis.upenn.edu/DL/dke.pdf (Oct. 2002)

22. Wiederhold, G.: Mediators in the Architecture of Future Information Systems, IEEE Com-
puter 25 (3), pp. 38-49, 1992

23. World Wide Web Consortium: The Document Object Model, http://www.w3.org/DOM/

http://www.cs.washington.edu/homes/weld/papers/shopbot.pdf
http://www.fetch.com/whitepapers/FetchWhitePaper.doc
http://www.kapowtech.com/filarkiv/pdf/robosuitetechnicalwhitepaper.pdf
http://www.wifo.uni-mannheim.de/~kuhlins/wrappertools/
http://www.cs.ucd.ie/staff/nick/home/research/download/kushmerick-phd.ps.gz
http://www-2.cs.cmu.edu/~rcm/papers/proposal/proposal.html
http://www-2.cs.cmu.edu/~rcm/papers/proposal/proposal.html
http://db.cis.upenn.edu/DL/dke.pdf
http://www.w3.org/DOM/

