
The Use of Existing XML Vocabularies for Web Services
– Querying Product Information with Web Services and BMEcat –

Gabriel Vögler,1 Ross Tredwell,2 and Stefan Kuhlins2

1 DaimlerChrysler AG, Research and Technology, Software Architecture (RIC/SA),
D–89013 Ulm, Germany

gabriel.voegler@daimlerchrysler.com
2 Department of Information Systems III, University of Mannheim,

D–68131 Mannheim, Germany
{kuhlins|tredwell}@uni-mannheim.de

Abstract: Dynamic Web service applications, e.g. querying product informa-
tion from different suppliers for the purpose of a price comparison, can only
run automatically if, beside the technical interface, the semantics of the data are
standardized. Several XML vocabularies, which, among other things, address
the exchange of product data, have been developed independent of Web ser-
vices (e.g. BMEcat, cXML, and xCBL, just to name a few). However, to our
knowledge, these standards have hardly been mentioned in conjunction with
Web services for querying product information. This article examines how
BMEcat, as an example for such a standardized “business language”, can be
used within a Web service interface. By using specific program code examples
a “procedure-oriented” and a “document-oriented” approach are compared.

1 Introduction

In a rare show of unity, the large software companies depict “Web services” as the
technology of the future for the integration of heterogeneous systems on the Internet
[e.g. 8, 11]. The consequent use of standards should simplify the integration of sys-
tems by allowing a high level of automation. Particularly for B2B collaboration, Web
services promise new possibilities for information exchange. Such a scenario is de-
scribed by IBM in a vision of “dynamic e-business” [8]. According to the Web ser-
vice model in [13], a company’s information system should be able to automatically
find other companies that are relevant to the nature of the business transaction and
connect with their information system. The Web service technology should then pro-
vide several methods to process the transaction with minimal manual intervention.

For instance, this type of concept fits in well with the idea of e-procurement. It
should be possible for a company’s procurement system to find all potential suppliers
of a certain product and to query their electronic catalog, thus enabling the best offer
to be determined. Contrary to electronic markets, which require registration, this con-
cept takes into account all suppliers that offer the appropriate Web services.

The first technical standards to implement such a complex scenario are already
available or will soon be issued. The Simple Object Access Protocol (SOAP) [3] de-
fines a mechanism for the transmission of XML messages with standard Internet
technologies. Furthermore, an optional SOAP module describes how to use XML to
accomplish remote procedure calls (RPC). This is often combined with another op-
tional module, which defines encoding rules for a programming language oriented
type system.

The Web Service Description Language (WSDL) is an XML language for describ-
ing Web services [5]. At its core, it provides an XML Schema [1, 2] based syntax for
the abstract description of the XML messages of Web services. Furthermore, it in-
cludes a binding mechanism, which allows the declaration of specific end-points for a
selection of transmission protocols. Besides SOAP, there are also bindings for HTTP-
GET/POST and MIME.

A further standard relevant in this context is called Universal Description, Discov-
ery and Integration (UDDI) [16]. This is a directory service for publishing and locat-
ing Web services on the Internet. For instance, this could be helpful to find all catalog
Web services of suppliers offering a certain range of products. However, this is not
discussed here in detail.

In accordance with Shannon [17] the “automatic price comparison” communica-
tion problem can be solved on the syntactic or technical level with the above-
mentioned Web service standards. In order to achieve a fully automatic electronic
price comparison, standardization on the basis of semantics is also required. An
automated comparison is only possible if suppliers’ product and price information is
provided in a unified data model.

To simplify the concept, we use existing XML vocabularies defined by XML
Schema. An example of a vocabulary for the scenario discussed above is BMEcat.
“BMEcat is by far the most widespread exchange standard for electronic product
catalogues in German-speaking countries.” [14] For instance, the BMEcat syntax
contains data elements for the specification of article master data (part number, ab-
breviation, price, and delivery time), structural data (product group affiliation, prod-
uct classification), and various additional information (e.g. keywords, references to
additional multimedia data). By integrating different product classification systems,
(e.g. eCl@ss [10]) products can be assigned to standardized product groups. The
BMEcat authors provide a DTD as well as an XSD (XML Schema).

BMEcat is merely an example of a “business language” which is available as an
XML industry standard. These standards are not promoted by the Web service idea
and are often formed independently of the method of transmission.

The remainder of this paper is structured as follows: Section 2 takes a look at the
SOAP and WSDL specification to demonstrate how an existing XML Schema can be
integrated. At the beginning of Section 3, two different approaches are described for
the XML Schema integration (“procedure-oriented” and “document-oriented”). For
each approach code examples are provided for the implementation of a Web service,
which queries product information from an online shop. Finally, Section 4 summa-
rizes and draws conclusions by comparing the advantages and disadvantages of both
approaches and lists possible areas for further development.

2 Integration of XML vocabularies in SOAP and WSDL

The modular aspect of the SOAP standard has to be accounted for when considering
the integration of BMEcat into the SOAP protocol. SOAP can be used either as a
simple transport mechanism for various XML data or as a complex RPC protocol
with its own type system. In the first case, only the messaging framework (chapter 2–
4 of [3]) and the HTTP Binding (chapter 6) of the SOAP standard is used. In the lat-
ter case, the SOAP messages must also comply with the RPC guidelines (chapter 7)
and the SOAP encoding rules (chapter 5). Should an existing XML Schema be used
for the actual SOAP message payload, this would lead to two options. Firstly, the
SOAP messages contain the exact XML syntax described by the BMEcat schema.
Secondly, the application of the encoding rules results in a modified XML structure,
which is optimized towards RPC.

A critical question is how the BMEcat schema can be used within the WSDL de-
scription of the Web service. Fortunately, WSDL uses XML Schema to define XML
messages abstractly. Furthermore, it provides an import mechanism, which allows the
use of external schemas. If the schema is imported in this way, all BMEcat types can
be used for the formulation of SOAP messages. Consequently, by reusing external
XML Schemas, a good integration of Web services and BMEcat is made possible.

The SOAP messages defined above have to be bound to specific transmission pro-
tocols and explicit communication end-points have to be assigned. Within WSDL,
this takes place in a separate module. These settings decide whether the XML Schema
definition is solely the starting point for the application of certain encoding rules or
includes the description of the specific transfer syntax. This refers to both types of
SOAP messages mentioned above.

However, there is one restriction concerning the seemingly simple integration of
BMEcat in WSDL, which needs to be addressed. The WSDL standard suggests some
guidelines (chapter 2.2 in [5]), which extend or limit XML Schema (e.g. use element
form instead of attributes and ArrayOfXXX notation [5]). These guidelines should
simplify the mapping from the abstract XML Schema description to a specific repre-
sentation, which complies with the SOAP encoding rules (RPC type of SOAP). This
optimization in line with the SOAP encoding rules favors a programming language
oriented data model. Unfortunately, the BMEcat schema does not comply with these
guidelines. The possible difficulties caused by this non-conformity will be discussed
later.

3 Two approaches illustrated using one example

The above examination of SOAP and WSDL results in two approaches relevant to
this discussion:

• Document-oriented approach: Only the SOAP messaging framework is used.
The SOAP body contains XML data, which does not have to comply with encod-
ing rules. The corresponding WSDL file is configured to specify that the embed-
ded schema describes the specific transfer syntax.

• Procedure-oriented approach: The SOAP messages must also comply with the
RPC guidelines and the encoding rules of the second part of the SOAP standard.
The corresponding WSDL file is configured to specify that the embedded schema
must be interpreted as an abstract description of the messages. The specific transfer
syntax results from the application of the SOAP encoding rules.

Both approaches have advantages and disadvantages depending on the specific re-
quirements of the application. The following section analyses in more detail the dif-
ferences regarding the integration of XML vocabularies (such as BMEcat) using an
extended version of the above e-procurement example.

3.1 Example: Online Shop

To provide a deeper understanding, we will now discuss an online shop that offers
standard possibilities for product searches. It is based on a classic multi-tier architec-
ture, which is implemented with J2EE technologies. The data layer is implemented
using a typical relational database system, the business logic uses EJB components
and the presentation layer consists of JSP’s. The EJB’s include several search func-
tions, which are invoked by the JSP front-end. For the following discussion the
method

public Product[] searchByDescription(String description)
{ … }

is selected as an example. It enables the search for products by description (e.g. “cam-
era”). The type Product is a JavaBean, which has the following methods:

public String getDescription() { … }
public String getProductId(){ … }
public float getPrice(){ … }

The updating and maintenance of the catalog is achieved by means of a supplemen-
tary software module, which is capable of exporting the whole catalog as a BMEcat
file. The search capabilities of searchByDescription() can then be released as a
Web service, whereby the ARTICLE model of the BMEcat standard replaces the pro-
prietary Product data model.

The WSDL description is the starting point for both approaches in order to comply
with the requirement to standardize the interface for the Web service. The first step is
to import the BMEcat schema to enable its use for type declarations. The actual mes-
sage sent for the product search is defined by a so-called WSDL procedure.

The purpose of BMEcat is to enable the interchange of whole product catalogs. No
suitable syntax for querying certain products is available to date. Therefore, a valid
BMEcat document must contain a list of ARTICLE items and some additional header
fields (catalog number, name of the supplier, etc.). This supplementary information is
essential, but often of no particular interest for the user of the interface. Therefore, the
method lookupDescription() uses either dummy data or a subset of BMEcat,

depending on the approach. At this point the interface description of the two ap-
proaches differs. Consequently, they are discussed individually in the following sec-
tions.

3.2 The procedure-oriented approach

With the procedure-oriented approach, the WSDL description in the preceding sec-
tion is developed further towards an RPC interface. This is achieved using a WSDL
procedure lookupDescription() with the return type Article[]. The defini-
tion of this type is referenced to the corresponding type of the imported BMEcat
schema. Thus, only a subset of the BMEcat vocabulary is used. At the end of the
WSDL specification, the SOAP encoding rules are referenced within the binding
element. (In the SOAP binding the attribute style has the value rpc.)

The fact that the application of the SOAP encoding rules simplifies the mapping
between XML data and programming language types leads to an advantage for the
implementation, because it allows the use of standard serializers and code generators.
A so-called Service Template Generator can create a code skeleton for the implemen-
tation of the catalog Web service, as described in the WSDL definition. For instance,
the Tool CapeStudio [4] produces the class structure shown in Listing 1. However,
the method lookupDescription() must be hand coded by using already exist-
ing classes, which were previously generated.

public class BMEcatServerBinding
 implements BMEcatServerBindingInterface {

 public generated.bmecat.ARTICLE[]
 lookupDescription(String description) throws Exception {

 // invoke existing search implementation
 de.myCompany.Product[] products
 = de.myCompany.shopServer.searchByDescription(description)
 // construct BMEcat types
 ARTICLE[] articles = new ARTICLE[products.length];

 // fill ARTICLE with data of Product
 for (int i = 0; i < products.length; ++i) {
 articles[i] = new de.myCompany.generated.ARTICLE();
 articles[i].setSUPPLIER_AID(product[i].getProductId());
 articles[i].getARTICLE_DETAILS.setDESCRIPTION_SHORT
 (product[i].getDescription());
 articles[i].getARTICLE_PRICE_DETAILS.getARTICLE_PRICE
 .setPRICE_AMOUNT(product[i].getPrice());
 // ... more BMEcat fields
 }
 return articles;
 }
}

Listing 1: Implementation of the procedure-oriented approach

The class generated.bmecat.ARTICLE is created automatically as a Java rep-
resentation of the BMEcat type ARTICLE. It includes some methods for the serializa-
tion into the SOAP type system. In accordance with the Bean-pattern, the data han-

dling of such types is achieved by the majority of tools using “getter” and “setter”
methods. In order to make the method lookupDescription() work, an object of
the type ARTICLE[] must be created and initialized with data of the corresponding
Product[]object. This leads to the following command:

articles[i].setSUPPLIER_AID(product[i].getProductId());

This means that the mapping of the proprietary product model of Product to the
BMEcat type ARTICLE requires hand coding. The developer does not have to deal
directly with SOAP or XML though (see Figure 1). For this reason, the use of the
BMEcat export functions is not recommended, because the Service Template Genera-
tor only works with Java data types.

In the approach described above, the BMEcat model can be used at a semantic
level in conjunction with an RPC-based Web service. Unfortunately, this is only true
for the abstract specification of the Web service. Due to the application of the SOAP
encoding rules, the Web service does not use the original syntax defined in the BME-
cat schema. Instead, an adapted version is implemented, which uses the SOAP type
system.

The direct integration of the BMEcat schema leads to problems with CapeStudio.
The tool generates code for the class generated.bmecat.ARTICLE that cannot
be compiled. It seems that it requires a standard WSDL description that complies with
the recommended conventions for XML Schema.

3.3 The document-oriented approach

In the case of the document-oriented approach, the WSDL definition in Section 3.1 is
extended to enable the exchange of XML documents. With the WSDL procedure
lookupDescription() a similar query interface to the RPC example is defined.
Here, the corresponding response message has the type BMECAT. This means that the
response entails a complete catalog structure that contains more information than is
required for the purpose of price comparisons. Such an interface design has the ad-
vantage of easier integration with other BMEcat applications. Furthermore, the BME-
cat schema only defines a few mandatory fields that are irrelevant in the context of
lookupDescription().

Encoding rules or RPC guidelines are not specified in the SOAP binding. (The at-
tribute style has the value document.) Hence, the SOAP message payload can
be validated against the BMEcat schema.

The use of arbitrary XML, and the absence of the SOAP encoding rules, makes the
process of serializing and deserializing between Java and XML more complicated
than in the case of the procedure-oriented approach. At this point, so-called XML-
Binding-Frameworks (e.g., JAXB [12]) could be a solution, which allow the genera-
tion of XML serializers for Java classes. However, such technologies are not inte-
grated in the Web service tools mentioned in this article. Therefore, a fully automatic
Web service generator, as in the case of the procedure-oriented approach, is not avail-
able.

SOAP Messaging Framework

SOAP RPC Convention and Encoding Rules

"BMEcat"
...
<SOAP-ENC:Array SOAP-ENC:arrayType="bmecat:ARTICLE">

<ARTICLE xsi:type="bmecat:ARTICLE">
<SUPPLIER_AID xsi:type="...">1245DF</SUPPLIER_AID>
<ARTICLE_DETAILS xsi:type="...">...</ARTICLE_DETAILS>
</ARTICLE>
<ARTICLE xsi:type="bmecat:ARTICLE"> </ARTICLE>

</SOAP-ENC:Array>
...

Service Implementation

Code Skeleton

Own Code

“Java”

Product Catalog

SOAP Messaging Framework

SOAP RPC Convention and Encoding Rules

"BMEcat"
...
<SOAP-ENC:Array SOAP-ENC:arrayType="bmecat:ARTICLE">

<ARTICLE xsi:type="bmecat:ARTICLE">
<SUPPLIER_AID xsi:type="...">1245DF</SUPPLIER_AID>
<ARTICLE_DETAILS xsi:type="...">...</ARTICLE_DETAILS>
</ARTICLE>
<ARTICLE xsi:type="bmecat:ARTICLE"> </ARTICLE>

</SOAP-ENC:Array>
...

SOAP Messaging Framework

SOAP RPC Convention and Encoding Rules

"BMEcat"
...
<SOAP-ENC:Array SOAP-ENC:arrayType="bmecat:ARTICLE">

<ARTICLE xsi:type="bmecat:ARTICLE">
<SUPPLIER_AID xsi:type="...">1245DF</SUPPLIER_AID>
<ARTICLE_DETAILS xsi:type="...">...</ARTICLE_DETAILS>
</ARTICLE>
<ARTICLE xsi:type="bmecat:ARTICLE"> </ARTICLE>

</SOAP-ENC:Array>
...

Service Implementation

Code Skeleton

Own Code

Service Implementation

Code Skeleton

Own Code

“Java”

Product Catalog

Figure 1: The procedure-oriented approach

The abandonment of SOAP encapsulating code requires more SOAP specific
knowledge and manual coding. For instance, one option for this scenario is the
JAXM framework [15]. On the one hand, it supports the developer with a standard
Servlet enabling own service implementations based on derivation. On the other
hand, it provides a SOAP API for the generation and handling of SOAP messages. In
addition to the basic structure of a SOAP message (SOAPMessage, SOAPHeader,
SOAPBody) the API also allows the handling of the XML relevant data of the
SOAP-Body. Similar to the procedure-oriented solution, the existing Java method
searchByDescription() could be used to successfully insert XML nodes of
the type ARTICLE. The following code extract should indicate the extent of the re-
quired detail:

SOAPElement ARTICLE = newCatalog.addChildElement("ARTICLE");
SOAPElement ARTICLE_DETAILS
 = ARTICLE.addChildElement("ARTICLE_DETAILS");
SOAPElement DESCRIPTION_SHORT
 = ARTICLE_DETAILS.addChildElement("DESCRIPTION_SHORT");
DESCRIPTION_SHORT.addTextNode(products[i].getDescription);

It becomes clear that this approach is quite cumbersome. For this reason, it is better to
use the BMEcat interface of the catalog software instead of the existing Java imple-
mentation. This means that the search function of searchByDescription()
must be re-implemented with XPath [7] expressions. The advantage derived is an
end-to-end XML solution, which requires no mapping between different data repre-
sentations (e.g., Java to XML and vice versa). The result of such a query is already in
BMEcat format and can be directly inserted into the SOAP body. Unfortunately, the
SOAP API of JAXM does not use a DOM-based object model. For that reason, in-
serting DOM nodes into the SOAP body is quite difficult. To use existing XML for
SOAP messages, JAXM requires the whole message (including the header) as a
DOM document. However, a complete manual generation of SOAP messages via
DOM means time consuming low-level programming.

import javax.servlet.*;
import javax.xml.messaging.*;
import javax.xml.soap.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.apache.xpath.*;

public class QueryListener extends JAXMServlet
 implements ReqRespListener {

 /* The initialization of the following objects is omitted:
 * bmeCatDocument: complete catalog of the shop as DOM Document
 * bmecatTemplate: catalog template for the response message
 * (contains no articles, but dummy data for mandatory fields)
 * messageFactory: Factory for the generation of SOAP messages
 */

 public SOAPMessage onMessage(SOAPMessage inMessage)
 throws Exception {

 // extract search string from SOAP request
 SOAPElement inBody
 = inMessage.getSOAPPart().getEnvelope().getBody();
 String description = inBody.getFirstChildElement().getValue();

 // process XPath query
 org.w3c.dom.NodeList resultList =
 XPathAPI.selectNodes(bmeCatDocument,
 "//ARTICLE[contains(ARTICLE_DETAILS/DESCRIPTION_SHORT, "
 + description + ")]");

 // generate BMEcat document for the response
 org.w3c.dom.Document bmecatResult =
 (Document) bmecatTemplate.cloneNode(true);

 // fill bmecatResult with resultList’s ARTICLE elements
 // ...

 // generate SOAP response
 SOAPMessage outMessage = messageFactory.createMessage();
 SOAPBody soapBody
 = outMessage.getSOAPPart().getEnvelope().getBody();

 insertDOM(soapBody, bmecatResult);
 return outMessage;
 }

 private void insertDOM(SOAPBody soapBody,
 org.w3c.dom.Document document) throws Exception {
 // inserts a DOM document into the SOAP body
 // ...
 }

Listing 2: Implementation of the document-oriented approach

Listing 2 shows an implementation of the Web service, which uses techniques de-
scribed by [9] to insert DOM nodes into the SOAP body. As a result, the code only
contains instructions for the receipt of a message, the invocation of the search
method, and the generation of the response message. For the latter step, the code can
be limited to the following instruction:

insertDOM(soapBody, bmecatResult);

A continuous XML solution is achieved reusing XML documents generated by the
catalog system for the SOAP messages. No complex data serialization is necessary
(see Figure 2). The procedure-oriented approach requires manual coding for the map-
ping between Product and ARTICLE. In comparison, the document-oriented ap-
proach requires less development effort for the shop example. One disadvantage is
the fact that SOAP messages have to be explicitly generated at the XML level. There-
fore, developers need more detailed knowledge of the SOAP protocol and the JAXM
API.

SOAP Messaging Framework

BMEcat

<BMECAT>
<HEADER>...<HEADER>
<T_NEW_CATALOG>
<ARTICLE>

<SUPPLIERAID>1245DF</SUPPLIERAID>
<ARTICLE_DETAILS>...</ARTICLE_DETAILS>

</ARTICLE>
<ARTICLE>...<ARTICLE>

<T_NEW_CATALOG>
<BMECAT>

Service Implementation

JAXM SOAP API

Own Code

XML

Product Catalog
(BMEcat)

SOAP Messaging Framework

BMEcat

<BMECAT>
<HEADER>...<HEADER>
<T_NEW_CATALOG>
<ARTICLE>

<SUPPLIERAID>1245DF</SUPPLIERAID>
<ARTICLE_DETAILS>...</ARTICLE_DETAILS>

</ARTICLE>
<ARTICLE>...<ARTICLE>

<T_NEW_CATALOG>
<BMECAT>

SOAP Messaging Framework

BMEcat

<BMECAT>
<HEADER>...<HEADER>
<T_NEW_CATALOG>
<ARTICLE>

<SUPPLIERAID>1245DF</SUPPLIERAID>
<ARTICLE_DETAILS>...</ARTICLE_DETAILS>

</ARTICLE>
<ARTICLE>...<ARTICLE>

<T_NEW_CATALOG>
<BMECAT>

Service Implementation

JAXM SOAP API

Own Code

Service Implementation

JAXM SOAP API

Own Code

XML

Product Catalog
(BMEcat)

Figure 2: The document-oriented approach

4 Conclusion and Future Directions

The importance of standardized semantics for dynamic integration applications has
been emphasized by the example of requesting and delivering product information in
the context of comparing offers. The possibility of using the existing XML industry
standard BMEcat within a Web service was examined. Two approaches were dis-
cussed: a document-oriented and a procedure-oriented approach.

The procedure-oriented approach appears very implementation-biased, because the
RPC conventions and the encoding rules allow the integration of a Web service with
standard elements of a programming language. The use of XML is hidden from the
developer, because the type conversion is done automatically. However, this means
that XML technologies for transformation (e.g., XSLT [6]), validation (e.g., XML
Schema) or data navigation (e.g., XPath) are not directly available. For instance, the
type constraints of the BMEcat schema are lost during type conversion, because the
Java classes generated by CapeStudio do not contain corresponding code for check-
ing data integrity.

The document-oriented approach is more focused on the exchange of XML docu-
ments. The structure of these documents is generally determined by the underlying
information and is not optimized for implementation specific aspects. The Web ser-
vice must be programmed at the XML level, which, on the one hand requires specific
API knowledge, but on the other hand allows the utilization of powerful XML tech-
nologies. Furthermore, the product data keeps its original structure, so that it can be
validated against the BMEcat schema.

In conclusion, it can be said, that the document-oriented approach is basically a
better method to resolve the problem of XML-vocabulary integration for Web ser-
vices, because it has less restrictions regarding the utilization of XML. The program-
ming language bias of the procedure-oriented approach complicates the integration of
XML industry standards into Web services.

The claims of some software companies that their tools can expose legacy applica-
tions as Web services, without the need for XML knowledge, should be viewed criti-
cally. The example discussed in this article shows that the vision of “dynamic e-
business” is only feasible if Web services offer their data in a standardized semantic
form. The advertised fully automatic tools only partially fulfill this prerequisite. The
favored document-oriented approach requires some XML programming, but it offers
the benefit of a completely standardized interface.

To increase interoperability, the standardization on the semantic level should be in-
tensified in the future. Unfortunately, BMEcat is only used in German-speaking coun-
tries. A worldwide accepted standard for product data is not yet available. Further-
more, the committees responsible for standardization must provide “Web service
bindings” for their XML vocabularies. This would lead to a consistent use of a spe-
cific vocabulary within a Web service, which is an important prerequisite for the re-
alization of the fully automatic price comparison.

As mentioned, BMEcat does not provide a syntax for querying product informa-
tion. Therefore, a standard query interface should be specified, which defines the pos-
sible search criteria. In addition, an appropriate result structure must be standardized,
which excludes unnecessary data. This would prevent the use of dummy data, as
illustrated in our example.

References

1. Beech, D.; Lawrence, S.; Maloney, M.; Mendelsohn, N.; Thompson, H. S. (eds.): XML
Schema Part 1: Structures. World Wide Web Consortium, Boston, USA, 2001. W3C Rec-
ommendation. URL: http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

2. Biron, P. V.; Malhotra, A. (eds.): XML Schema Part 2: Datatypes. World Wide Web Con-
sortium, Boston, USA, 2001. W3C Recommendation.
URL: http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

3. Box, D.; Ehnebuske, D.; Kakivaya, G.; Mendelsohn, N.; Frystyk Nielsen, H.; Thatte, S.;
Winer, D. (eds.): Simple Object Access Protocol (SOAP) 1.1. World Wide Web Consor-
tium, Boston, USA, 2000. W3C Note. URL: http://www.w3.org/TR/SOAP/

4. CapeClear (editor): CapeStudio 3 Technical Overview. CapeClear, USA, 2002.
URL: http://www.capeclear.com/products/whitepapers/CSTechnicalOverview.pdf

5. Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S. (eds.): Web Services Descrip-
tion Language (WSDL) 1.1. World Wide Web Consortium, Boston, USA, 2001. W3C
Note. URL: http://www.w3.org/TR/wsdl

6. Clark, J. (editor): XSL Transformations (XSLT) Version 1.0. World Wide Web Consor-
tium, USA, 1999. W3C Recommendation. URL: http://www.w3c.org/TR/xslt

7. Clark, J.; DeRose, S. (eds.): XML Path Language (XPath). World Wide Web Consortium,
Boston, USA, 1999. W3C Recommendation.
URL: http://www.w3.org/TR/1999/REC-xpath-19991116

8. Colan, M.: Dynamic e-business: Using Web services to transform business. IBM, USA,
2001.URL: http://www-3.ibm.com/software/solutions/webservices/pdf/wsintro.pdf

9. Cope, M.: How to Add a DOM Document Object as a SOAP Body Element in a SOAP
Message Using Java APIs for XML Messaging (JAXM). Sun Microsystems, USA, 2002.
Technical Article.
URL: http://access1.sun.com/techarticles/SOAP_DOM/SOAP_DOM.html

10. eCl@ass e.V. (editor): eCl@ss – Whitepaper 0.6. eCl@ss e.V., Köln, Germany, 2000.
URL: http://www.eclass.de/informationen/download/eClassWhitePaper06.doc

11. Ewald, T.: Understanding XML Web Services – The Web Services Idea. Microsoft Corpo-
ration, USA, 2002.
URL: http://msdn.microsoft.com/webservices/understanding/readme/default.aspx

12. Fialli, J.; Vajjhala, S.; (eds.): The Java Architecture for XML Binding (JAXB) – Final
V1.0. Sun Microsystems, Santa Clara, USA, 2003. URL: http://java.sun.com/xml/jaxb/

13. Heather, K.: Web Services Conceptual Architecture (WSCA 1.0), IBM Software Group,
USA, 2001. pp. 7–9.
URL: http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

14. Hümpel, C.; Kelkar, O.; Pastoors, T.; Renner, T.; Schmitz, V.: Spezifikation BMEcat Ver-
sion 1.2. Fraunhofer IAO, University of Essen BLI, 2001,
URL: http://www.bmecat.org/

15. Kassem, N.; Mordani, R; Vijendran, A.; Java API for XML Messaging (JAXM) v1.1 Spe-
cification, Sun Microsystems, Santa Clara, USA, 2002.
URL: http://java.sun.com/xml/downloads/jaxm.html

16. OASIS – Organization for the Advancement of Structured Information Standards (editor):
UDDI Version 3 Specifications, USA, 2002.
URL: http://www.oasis-open.org/committees/uddi-spec/tcspecs.shtml - uddiv3

17. Shannon, C. E.: A Mathematical Theory of Communication. Bell Systems Technical Jour-
nal, Vol. 27, USA, 1948, pp. 379–423 and 623–656.

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.capeclear.com/products/whitepapers/CSTechnicalOverview.pdf
http://www.w3.org/TR/wsdl
http://www.w3c.org/TR/xslt
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www-3.ibm.com/software/solutions/webservices/pdf/wsintro.pdf
http://access1.sun.com/techarticles/SOAP_DOM/SOAP_DOM.html
http://www.eclass.de/informationen/download/eClassWhitePaper06.doc
http://msdn.microsoft.com/webservices/understanding/readme/default.aspx
http://java.sun.com/xml/jaxb/
http://www-3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf
http://www.bmecat.org/
http://java.sun.com/xml/downloads/jaxm.html
http://www.oasis-open.org/committees/uddi-spec/tcspecs.shtml

